People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hebdowska-Krupa, Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Possibility of Using a Geopolymer Containing Phase Change Materials as a Sprayed Insulating Coating - Preliminary Results
Abstract
<jats:p>Geopolymers have been known for decades and classified as inorganic polymers, characterized by high resistance to high temperatures. They can be successfully used for the thermal insulation of buildings, especially in the foamed form. The addition of phase change materials (PCMs) in such materials may also increase the heat capacity of the materials, therefore, using them for building cladding can increase the thermal comfort of the building and prevent it from overheating. This study tests the addition of PCMs to geopolymers by spraying and presents the results. Additionally, the study includes preliminary experience concerning the technology of applying these materials, along with selected test results that assess the properties of the produced coatings. The results indicate that the addition of PCMs in the amount of 15% can increase the heat capacity of geopolymer materials by about 150-180%, and the foamed geopolymer coatings produced have a thermal conductivity in the range of 0.07-0.09 W/mK.</jats:p>