Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harris, Caitlin

  • Google
  • 2
  • 13
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023A paradigm for understanding whole ecosystem effects of offshore wind farms in shelf seas11citations
  • 2021Assessment of Stabilized Hydrogen Peroxide for Use in Reducing <i>Campylobacter</i> Levels and Prevalence on Broiler Chicken Wings5citations

Places of action

Chart of shared publication
Hunt, Georgina Louise
1 / 1 shared
Wihsgott, Juliane
1 / 1 shared
Scott, Beth E.
1 / 2 shared
Williams, Charlotte
1 / 2 shared
Zampollo, Arianna
1 / 1 shared
Waggitt, James
1 / 1 shared
Gormley, Kate
1 / 2 shared
Sjöstrand, Sandra
1 / 1 shared
Declerck, Morgane
1 / 1 shared
Trifonova, Neda
1 / 1 shared
Isaksson, Natalie
1 / 1 shared
Williamson, Benjamin
1 / 1 shared
Benninghaus, Ella-Sophia
1 / 1 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Hunt, Georgina Louise
  • Wihsgott, Juliane
  • Scott, Beth E.
  • Williams, Charlotte
  • Zampollo, Arianna
  • Waggitt, James
  • Gormley, Kate
  • Sjöstrand, Sandra
  • Declerck, Morgane
  • Trifonova, Neda
  • Isaksson, Natalie
  • Williamson, Benjamin
  • Benninghaus, Ella-Sophia
OrganizationsLocationPeople

article

Assessment of Stabilized Hydrogen Peroxide for Use in Reducing <i>Campylobacter</i> Levels and Prevalence on Broiler Chicken Wings

  • Harris, Caitlin
Abstract

<jats:sec><jats:title>ABSTRACT</jats:title><jats:p>Poultry processing establishments use antimicrobial aids on broiler parts to minimize Campylobacter contamination. A silver-stabilized hydrogen peroxide (SHP) product was assessed for use as an antimicrobial processing aid. In a series of experiments, wing segments with skin were inoculated with 103 to 107 cells of Campylobacter coli, followed by treatment with SHP at 15,000 or 30,000 mg/L, peroxyacetic acid (PAA) at 300 or 3,000 mg/L (parts per million), or water. Each treatment was applied by either dip or spray. Rinsates from each wing segment were analyzed for direct counts and prevalence of Campylobacter. Treatment with SHP or PAA significantly reduced Campylobacter levels compared with water controls by up to 2.22 log CFU/mL. At high inoculum levels (106 to 107), SHP and PAA applied by dip had up to 1.27 log CFU/mL further reductions of Campylobacter levels compared with spray-treated wing segments. Additionally, wing drumettes were observed to retain higher levels and prevalence of Campylobacter recovery compared with wing flats at a low inoculation level (103). The results indicated that there was no carryover effect of SHP (same day versus 24 h) and dip treatment with SHP or PAA decreased Campylobacter recovery on broiler chicken wing segments compared with a water control. Although a 2-log reduction was modest, SHP had similar efficacy as the commonly used processing aid PAA. SHP shows potential for further investigation as an antimicrobial processing aid for use on poultry parts.</jats:p></jats:sec><jats:sec><jats:title>HIGHLIGHTS</jats:title></jats:sec>

Topics
  • silver
  • experiment
  • Hydrogen
  • size-exclusion chromatography