Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Al-Obaidi, Noor Sabah

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Preparation of nanocomposites for corrosion treatmentcitations

Places of action

Chart of shared publication
Mahmoud, Zaid H.
1 / 6 shared
Kamal, Ban W.
1 / 1 shared
Abd, Ahmed N.
1 / 1 shared
Al-Mahdawi, Anfal Salam
1 / 1 shared
Sadeq, Zainab Esmail
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Mahmoud, Zaid H.
  • Kamal, Ban W.
  • Abd, Ahmed N.
  • Al-Mahdawi, Anfal Salam
  • Sadeq, Zainab Esmail
OrganizationsLocationPeople

article

Preparation of nanocomposites for corrosion treatment

  • Mahmoud, Zaid H.
  • Kamal, Ban W.
  • Abd, Ahmed N.
  • Al-Mahdawi, Anfal Salam
  • Al-Obaidi, Noor Sabah
  • Sadeq, Zainab Esmail
Abstract

<jats:p>Nano-copper oxide was prepared by utilizing photolysis method and characteristic by using FT-IR, XRD and SEM; the nano size was about 51 nm, environmental impact (pollution reduction) can be improved by using nanostructure particles in preventing corrosion, and nanocomposites have also proven to be an effective alternative to other hazardous and toxic compounds. The results of the current article indicated that the inhibition efficiency increases with increasing concentration of nano-oxide which is added to methyl orange, curcumin, the corrosion rate (CR), inhibition effectiveness were studied at different temperatures. The results showed an increase corrosion rate and a decrease in inhibition efficiency with increase temperature.&#x0D; KEY WORDS: Corrosion, Inhibitors, Copper oxide, Nanocomposites&#x0D; Bull. Chem. Soc. Ethiop. 2024, 38(2), 501-509.                                                                &#x0D; DOI: https://dx.doi.org/10.4314/bcse.v38i2.17</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • compound
  • corrosion
  • scanning electron microscopy
  • x-ray diffraction
  • copper