Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Habibi, Hossein

  • Google
  • 1
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Developing a Novel Ice Protection System for Wind Turbine Blades Using Vibrations of Both Short and Long Wavelengths7citations

Places of action

Chart of shared publication
Selcuk, Cem
1 / 8 shared
Edwards, Graham
1 / 2 shared
Marks, Adam
1 / 3 shared
Gan, Tat Hean
1 / 9 shared
Cheng, Liang
1 / 4 shared
Kappatos, Vassilis
1 / 16 shared
Zheng, Haitao
1 / 2 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Selcuk, Cem
  • Edwards, Graham
  • Marks, Adam
  • Gan, Tat Hean
  • Cheng, Liang
  • Kappatos, Vassilis
  • Zheng, Haitao
OrganizationsLocationPeople

document

Developing a Novel Ice Protection System for Wind Turbine Blades Using Vibrations of Both Short and Long Wavelengths

  • Selcuk, Cem
  • Edwards, Graham
  • Marks, Adam
  • Habibi, Hossein
  • Gan, Tat Hean
  • Cheng, Liang
  • Kappatos, Vassilis
  • Zheng, Haitao
Abstract

<p>Icing conditions in cold regions of the world may cause problems for wind turbine operations, since accreted ice can reduce the efficiency of power generation and create concerns regarding ice-shedding. This paper covers modelling studies and some experimental development for an ongoing ice protection system that provides both deicing and anti-icing actions for wind turbine blades. The modelling process contained two main sections. The first part involved simulation of vibrations with very short wavelength or ultrasonic guided waves (UGW) on the blade to determine optimal excitation frequency and transducer configuration. This excitation creates horizontal shear stress at the interface between ice and blade and focuses energy at the leading edge for de-bonding ice layers. The second modelling approach simulated the effects of vibrations with very long wavelength along with estimation of fatigue life due to harmonic forces to characterise the best parameters for shaker (s) mounted on blades. In parallel with this study, an empirical array of novel resonating shear transducers has been developed using a Design of Experiments (DoE) approach to demonstrate the practicability of inducing shear horizontal waves at the leading edge of wind turbine blades. This experimental verification also makes it possible to investigate the many parameters influencing ice-removal. In addition, piezo-electric and macro-fibre composite actuators have been investigated in place of conventional electro-magnetic shakers, in order to save weight and simplify integration of the deicing system components. The ongoing research is intended to provide an active solution for icing prevention and deicing, enabling safe and reliable operation of wind turbines in adverse weather conditions.</p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • fatigue
  • composite
  • ultrasonic