People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Berg, Rolf W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Pressurized solid phosphate electrolyzer for medium temperature water splittingcitations
- 2020CsH 2 PO 4 as Electrolyte for the Formation of CH 4 by Electrochemical Reduction of CO 2citations
- 2020CsH2PO4 as Electrolyte for the Formation of CH4 by Electrochemical Reduction of CO2citations
- 2012Tailoring Properties of Biocompatible PEG-DMA Hydrogels with UV Lightcitations
- 2011NdHO, a novel oxyhydridecitations
- 2008Ge nanoclusters in PECVD-deposited glass caused only by heat treatmentcitations
- 2007Ge nanoclusters in PECVD-deposited glass after heat treating and electron irradiationcitations
- 2004GE NANOCLUSTERS IN PLANAR GLASS WAVEGUIDES DEPOSITED BY PECVD
- 2002Raman mapping in the elucidation of solid salt eutectic and near eutectic structures
Places of action
Organizations | Location | People |
---|
article
Tailoring Properties of Biocompatible PEG-DMA Hydrogels with UV Light
Abstract
Hydrogels are highly water-absorbent hydrophilic polymer networks, which show potential in many biocompatible ap- plications. In previous work, we demonstrated the feasibility of using poly(ethylene glycol) dimethacrylate (PEG-DMA) gels polymerized with a photoinitiator for encapsulation and stabilization of painted biomimetic membrane arrays for novel separation technologies or biosensor applications. These gels were formed from PEG-DMA monomers suspended in phosphate buffered saline (PBS) solution and gelated by radical polymerization in the presence of the photoinitiator Darocur 1173. In this work, we show that the properties of a PEG-DMA hydrogel formed by photoinitiated polymerize- tion can be tailored by varying the photocrosslinking time. Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (RS) showed that the optimal crosslinking time for the gel was 6 - 10 minutes and that the water content of the gels could be tuned in the range of 50 - 90 wt%. The resistivity was between 0.8 - 3.5 Ωm, which is comparable to that of PBS. The low resistivity of the gel makes it compatible for encapsulating membranes for (ion channel based) biosensor applications. With FTIR and RS we identified spectral features of the hydrogel, which may serve as a diag- nostic tool to monitor changes in the gels due to variation in parameters such as time, pH, temperature, aging or expo- sure to chemicals or biological material.