People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Elblbeisi, Mahassen H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Analyzing and Exploring a Model for High-Efficiency Perovskite Solar Cells
Abstract
Perovskite materials have drawn a lot of interest recently due to their potential to increase solar cell efficiency. This study uses the solar cell capacitance simulator (SCAPS-1D) to develop and simulate a perovskite solar cell made of semiconductor materials. The design that has been suggested is Al: ZnO/ ZnO/ CdS/ CsSnCl3/ and MoS2. The analysis focuses on how different characteristics of the material affect the device's performance. The analysis of the data reveals that the architecture had 26.15% power conversion efficiency (PCE). The solar cell provides interest develop a non-toxic solar cell, with low manufacturing costs, outstanding conversion efficiency, and stability.