People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brooks, Jeff
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024A micromechanical study of heat treatment induced hardening in α -brasscitations
- 2021A study of the deformation derivatives for a Ti-6Al-4V inertia friction weldcitations
- 2020Microstructural modelling of thermally-driven β grain growth, lamellae & martensite in Ti-6Al-4Vcitations
- 2019Microstructural modelling of the α+β phase in Ti-6Al-4V:citations
Places of action
Organizations | Location | People |
---|
article
A study of the deformation derivatives for a Ti-6Al-4V inertia friction weld
Abstract
The velocity–versus-time rundown curves from two experimental Ti-6Al-4V inertia friction welds were analysed and differentiated several times, to produce rotational acceleration, jerk, jounce (or snap), crackle and pop versus-times curves for each weld. Titanium alloys and their mechanical properties are known to be highly sensitive to strain rate as the material is deformed, though nothing has ever been considered in terms of the higher-order time-derivatives of position. These curves have been studied and analysed further, for a more complete understanding of the derivative trends. Rotational acceleration and jerk traces both display behavior patterns across the two welds as the part rotates under action from the flywheel. The rotational snap also displays a pattern in this derivative during the final approximately 0.5 s of welding, as the energy dissipates. Evidence of a distinct oscillatory pattern in the rotational crackle and pop terms was noted for one weld when differentiating over a larger time-base, though could not be replicated in the 2nd weld. The higher derivative curves allow distinction of different process regimes, indicating that inertial energy mostly influences the time-base of dynamically steady-state phase. Qualitative differences between initial energies are evident in higher derivatives.