People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guillemoles, Jean-François
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023The Role of Nonequilibrium LO Phonons, Pauli Exclusion, and Intervalley Pathways on the Relaxation of Hot Carriers in InGaAs Multi-Quantum-Well Structures
- 2023Breaking 1.7V open circuit voltage in large area transparent perovskite solar cells using bulk and interfaces passivation.citations
- 2023The modulated photoluminescence technique versus temperature: opportunities for better determination of trap parameters
- 2023The role of nonequilibrium LO phonons, Pauli exclusion, and intervalley pathways on the relaxation of hot carriers in InGaAs/InGaAsP multi-quantum-wellscitations
- 2022In – depth chemical and optoelectronic analysis of triple-cation perovskite thin films by combining XPS profiling and PL Imagingcitations
- 2021Mapping Transport Properties of Halide Perovskites via Short-Time-Dynamics Scaling Laws and Subnanosecond-Time-Resolution Imagingcitations
- 2021In – depth chemical and optoelectronic analysis of triple-cation perovskite thin films by combining XPS profiling and PL Imagingcitations
- 2021The influence of relative humidity upon Cu(In,Ga)Se2 thin-film surface chemistry: an X-ray photoelectron spectroscopy studycitations
- 2020Backside light management of 4-terminal bifacial perovskite/silicon tandem PV modules evaluated under realistic conditionscitations
- 2020Determination of photo-induced Seebeck coefficient for hot carrier solar cell applications
- 2019MIS Structures for Solar Cells Perimeter Passivation
- 2019Cu depletion on Cu(In,Ga)Se2 surfaces investigated by chemical engineering: An x-ray photoelectron spectroscopy approachcitations
- 2017Cathodoluminescence mapping for the determination of n-type doping in single GaAs nanowires
- 2017Tuning the chemical properties of europium complexes as downshifting agents for copper indium gallium selenide solar cellscitations
- 2017EuIII‐Based Nanolayers as Highly Efficient Downshifters for CIGS Solar Cellscitations
- 2014Monolithic Integration of Diluted-Nitride III–V-N Compounds on Silicon Substrates: Toward the III–V/Si Concentrated Photovoltaicscitations
- 2014Monolithic Integration of Diluted-Nitride III–V-N Compounds on Silicon Substrates: Toward the III–V/Si Concentrated Photovoltaicscitations
Places of action
Organizations | Location | People |
---|
article
MIS Structures for Solar Cells Perimeter Passivation
Abstract
Perimeter recombination takes place in all photovoltaic architectures, its detrimental effect increasing with the perimeter to area ratio. A new efficient passivation method is introduced here, inspired by the working principle of MOSFETs. It consists in a Metal Insulator stack, deposited on top of the Semiconductor structure. As a transistor, it acts as a switch to prevent the flow of majority carriers towards the defective side walls. Simulation results show that the detrimental effect of perimeter recombination can be reduced by half in the particular case of a GaAs solar cell under one sun illumination. Because no chemical treatment is involved, our MIS based passivation solution can be adapted to various photovoltaic materials as a perspective. A possible additional application will be devices working under intense illumination, where resistive effects are a limiting factor. 36th European Photovoltaic Solar Energy Conference and Exhibition; 615-617