People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kubiś, Michał
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023A comprehensive study on hot deformation behaviour of the metastable β titanium alloy prepared by blended elemental powder metallurgy approach
- 2023Experimental and numerical estimation of thermal conductivity of bio-based building material with an enhanced thermal capacity
- 2020Design of pulsed neon injection in the synthesis of W-B-C films using magnetron sputtering from a surface-sintered single powder cathodecitations
- 2020On the anisotropy of thermal conductivity in ceramic brickscitations
- 2020Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputteringcitations
- 2018The numerical investigation of the effective thermal conductivity of the carbon fiber reinforced epoxy composites manufactured by the vacuum bag method
- 2018Effect of Severe Plastic Deformation Realized by Hydrostatic Extrusion on Heat Transfer in CP Ti Grade 2 and 316L Austenitic Stainless Steelcitations
- 2018Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Studycitations
- 2018Enhancement of thermo-rheological properties of smart materials based on SiO2 and PPG modificated with expanded graphitecitations
- 2018Investigations on thermal anisotropy of ceramic bricks
- 2017Effect of particle shape and imperfect filler-matrix interface on effective thermal conductivity of epoxy-aluminum composite
- 2015Effect of styrene addition on thermal properties of epoxy resin doped with carbon nanotubescitations
- 2014Enhancement of thermal and electrical conductivity of CFRP by application of carbon nanotubes
Places of action
Organizations | Location | People |
---|
article
Effect of Severe Plastic Deformation Realized by Hydrostatic Extrusion on Heat Transfer in CP Ti Grade 2 and 316L Austenitic Stainless Steel
Abstract
A vital problem faced in the implant logical practice is the heat generated due to friction unavoidable during surgical interventions. The proliferation of heat through the implant results in an increase of temperature above the immunological ability of the human tissues. In present study the mechanical, structural, and thermo-physical properties of titanium CP Ti grade 2 and 316L stainless steel processed by hydrostatic extrusion (HE) are analyzed and discussed. Effect of severe plastic deformation on the thermo-physical properties is presented. In both the materials the structures obtained were of nanometric scale with an average grain size of 80 nm in 316L steel and 95 nm in CP Ti grade 2. After HE, the strength and yield stress increased, with respect to those of the as-received material, respectively by 160% and 300% in steel, and 86% and 120% in titanium. The thermal diffusivity decreased by 8.5% in steel and by 7.5% in titanium, and the specific heat by 8.55% in steel and 4.5% in titanium, resulting in 12-13% decrease of thermal conductivity. All changes were attributed to nanostructure generated during severe plastic deformation by hydrostatic extrusion. The reduced thermo-physical properties widen the possibilities for bioengineering applications of both materials.