Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Ragini

  • Google
  • 10
  • 12
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2021A Molecular Insight of the Role of PIN-1 Promoter Polymorphism (- 667C > T; rs2233679) in Chronic Kidney Disease Patients with Secondary Hyperparathyroidism.1citations
  • 2016Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acidcitations
  • 2015Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysatecitations
  • 2015Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrile1citations
  • 2015Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresol4citations
  • 2015Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatment1citations
  • 2015Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated P-Phenylenediamine and p-Toluidine9citations
  • 2015Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acid2citations
  • 2015Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichlorobenzene2citations
  • 2015Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Impact of Biofield Treatment1citations

Places of action

Chart of shared publication
Vachhani, U.
1 / 1 shared
Raghavani, P.
1 / 1 shared
Parchwani, T.
1 / 1 shared
Dd, Patel
1 / 1 shared
Dholariya, S.
1 / 1 shared
Parchwani, Deepak
1 / 1 shared
Rajput, A.
1 / 4 shared
Nayak, Gopal
9 / 46 shared
Branton, Alice
9 / 46 shared
Trivedi, Mahendra Kumar
9 / 61 shared
Trivedi, Dahryn
9 / 44 shared
Jana, Snehasis
9 / 51 shared
Chart of publication period
2021
2016
2015

Co-Authors (by relevance)

  • Vachhani, U.
  • Raghavani, P.
  • Parchwani, T.
  • Dd, Patel
  • Dholariya, S.
  • Parchwani, Deepak
  • Rajput, A.
  • Nayak, Gopal
  • Branton, Alice
  • Trivedi, Mahendra Kumar
  • Trivedi, Dahryn
  • Jana, Snehasis
OrganizationsLocationPeople

article

Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresol

  • Nayak, Gopal
  • Singh, Ragini
  • Branton, Alice
  • Trivedi, Mahendra Kumar
  • Trivedi, Dahryn
  • Jana, Snehasis
Abstract

p-Chloro-m-cresol (PCMC) is widely used in pharmaceutical industries as biocide and preservative. However, it faces the problems of solubility in water and photo degradation. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectral properties of PCMC. For this study, PCMC sample was divided into two groups i.e., one served as treated and other as control. The treated group received Mr. Trivedi’s biofield treatment and both control and treated samples of PCMC were characterized using X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy and gas chromatography–mass spectrometry (GCMS). The XRD result showed a 12.7% increase in crystallite size in treated samples along with increase in peak intensity as compared to control. Moreover, surface area analysis showed a 49.36% increase in surface area of treated PCMC sample as compared to control. The thermal analysis showed significant decrease (25.94%) in the latent heat of fusion in treated sample as compared to control. However, no change was found in other parameters like melting temperature, onset temperature of degradation, and Tmax (temperature at which maximum weight loss occur). The FT-IR spectroscopy did not show any significant change in treated PCMC sample as compared to control. Although, the UV-Vis spectra of treated samples showed characteristic absorption peaks at 206 and 280 nm, the peak at 280 nm was not found in control sample. The control sample showed another absorbance peak at 247 nm. GC-MS data revealed that carbon isotopic ratio (δ13C) was changed up to 204% while δ18O and δ37Cl isotopic ratio were significantly changed up to 142% in treated samples as compared to control. These findings suggest that biofield treatment has significantly altered the physical, thermal and spectroscopic properties, which can affect the solubility and stability of p-chloro-m-cresol and make it more useful as a pharmaceutical ingredient.

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • x-ray diffraction
  • thermogravimetry
  • differential scanning calorimetry
  • gas chromatography
  • Fourier transform infrared spectroscopy
  • spectrometry
  • melting temperature
  • heat of fusion
  • gas chromatography-mass spectrometry