People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trivedi, Dahryn
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (44/44 displayed)
- 2019Consciousness Energy Healing Treatment and its Impact on Physicochemical and Thermal Properties of Tellurium
- 2019Evaluation of Physicochemical and Thermal Properties of the Consciousness Energy Healing Treated Tellurium
- 2019Characterization of the biofield energy treated aluminium using PSA, PXRD, and TGA/DTG analytical techniques
- 2019Solid State Characterization of the Consciousness Energy Healing Treated Ferrous Sulphate
- 2019Impact of the Trivedi Effect® on the Physicochemical Properties of Antimony
- 2018Evaluation of the Physicochemical and Thermal Properties of Antimony: Influence of the Energy of Consciousness Healing Treatment
- 2018Assessment of the Influence of Biofield Energy Treatment on the Physicochemical and Thermal Properties of Lead Using PXRD, PSA, and DSC
- 2018Evaluation of the Physicochemical and Thermal Properties of Consciousness Energy Healing Treated Lead Using PXRD, PSA, and DSC Analysiscitations
- 2018Evaluation of the Physicochemical and Thermal Properties of Chromium Trioxide (CrO3): Impact of Consciousness Energy Healing Treatmentcitations
- 2018Spectroscopic and Calorimetric Evaluation of the Consciousness Energy Healing Treated Lead
- 2016Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acid
- 2015Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysate
- 2015Physicochemical and Spectroscopic Characterization of p-Chlorobenzaldehyde: An Impact of Biofield Energy Treatment
- 2015Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrilecitations
- 2015Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder
- 2015Characterization of Physicochemical and Spectroscopic Properties of Biofield Energy Treated Bio Peptone
- 2015Physicochemical and Spectroscopic Characterization of Yeast Extract Powder After the Biofield Energy Treatmentcitations
- 2015Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresolcitations
- 2015Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatmentcitations
- 2015Effect of Biofield Treatment on Physical, Thermal, and Spectral Properties of SFRE 199-1 Mammalian Cell Culture Medium
- 2015Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatmentcitations
- 2015Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazolecitations
- 2015Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated P-Phenylenediamine and p-Toluidinecitations
- 2015Evaluation of Physical, Thermal and Spectral Parameters of Biofield Energy Treated Methylsulfonylmethanecitations
- 2015Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Methyl-2-Naphthyl Ethercitations
- 2015Physicochemical and Spectroscopic Properties of Biofield Energy Treated Protose
- 2015Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenylcitations
- 2015Influence of Biofield Treatment on Physical and Structural Characteristics of Barium Oxide and Zinc Sulfidecitations
- 2015Characterization of Physical, Thermal and Spectral Properties of Biofield Treated o-Aminophenolcitations
- 2015Physicochemical and Spectroscopic Characterization of Biofield Energy Treated p-Anisidinecitations
- 2015Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Murashige and Skoog Plant Cell Culture Mediacitations
- 2015Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acidcitations
- 2015Physicochemical Characterization of Biofield Energy Treated Calcium Carbonate Powdercitations
- 2015Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichlorobenzenecitations
- 2015Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol
- 2015Physicochemical and Atomic Characterization of Silver Powder after Biofield Treatmentcitations
- 2015Characterization of Physicochemical and Thermal Properties of Chitosan And Sodium Alginate after Biofield Treatmentcitations
- 2015Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Impact of Biofield Treatmentcitations
- 2015Physical, Thermal and Spectral Properties of Biofield Energy Treated 2,4-Dihydroxybenzophenone
- 2015Characterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose
- 2015Physical, Atomic and Thermal Properties of Biofield Treated Lithium Powdercitations
- 2015Physical and Structural Characterization of Biofield Energy Treated Carbazolecitations
- 2015Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatmentcitations
- 2015Physicochemical Evaluation of Biofield Treated Peptone And Malmgren Modified Terrestrial Orchid Mediumcitations
Places of action
Organizations | Location | People |
---|
article
Physicochemical and Atomic Characterization of Silver Powder after Biofield Treatment
Abstract
Silver is widely utilized as antimicrobial agent and wound dressing, where its shape, size, surface area, and surface charge play an important role. The aim of present study was to evaluate the impact of biofield treatment on physicochemical and atomic properties of silver powder. The silver powder was divided into two groups, coded as control and treatment. The treatment group received Mr. Trivedi’s biofield treatment. Subsequently, control and treated samples were characterized using particle size analyzer, X-ray diffraction (XRD) and surface area analyser. Particle size data exhibited that particle sizes d10, d50, d90, and d99 (Size, below which 10, 50, 90, and 99% particle are present, respectively) of treated silver powder were substantially reduced up to 95.8, 89.9, 83.2, and 79.0% on day 84 as compared to control. XRD results showed that lattice parameter, unit cell volume, and atomic weight were reduced, whereas density and nuclear charge per unit volume were found to be increased as compared to control. In addition, the crystallite size was significantly reduced up to 70% after biofield treatment on day 105 as compared to control. Furthermore, the surface area of treated silver powder was substantially enhanced by 49.41% on day 68 as compared to control. These findings suggest that biofield treatment has significantly altered the atomic and physicochemical properties which could make silver more useful in antimicrobial applications.