Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Madanshetty, Pallavi

  • Google
  • 2
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021A comparative evaluation of colour stability of different resin cements and its influence on the final shade of All-Ceramic Restorations: An in-vitro Study.citations
  • 2021Assessment of different surface treatments and shear bond characteristics of poly-ether-ether-ketone: An In vitro SEM analysis.8citations

Places of action

Chart of shared publication
Gupta, A.
1 / 17 shared
Pp, Wadkar
1 / 1 shared
Dugal, R.
2 / 2 shared
Devadiga, T.
1 / 1 shared
Khan, Abid
1 / 1 shared
Godil, A.
1 / 1 shared
Parkar, U.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Gupta, A.
  • Pp, Wadkar
  • Dugal, R.
  • Devadiga, T.
  • Khan, Abid
  • Godil, A.
  • Parkar, U.
OrganizationsLocationPeople

article

A comparative evaluation of colour stability of different resin cements and its influence on the final shade of All-Ceramic Restorations: An in-vitro Study.

  • Gupta, A.
  • Pp, Wadkar
  • Dugal, R.
  • Madanshetty, Pallavi
Abstract

<h4>Introduction</h4>Colour changes of the luting material can become clinically visible affecting the aesthetic appearance of thin ceramic veneers. Therefore, unfortunately, the long-term success of veneers is tied to the colour stability of the luting agent used to cement them.<h4>Aim</h4>To compare the colour stability of different resin cements and its influence on the final shade of overlying ceramic using two different thicknesses of ceramic.<h4>Material and methodology</h4>Sixty disc-shaped specimens of high translucency (HT) A2 shade of two thicknesses (0.5 mm & 1 mm) were prepared from lithium disilicate glass-ceramic. The discs of each thickness were further divided into three groups randomly depending upon the resin cements used. Group A - light cure resin cement - Variolink N LC by Ivoclar Vivadent in clear shade, Group B - base paste of dual-cure resin cement - Variolink N by Ivoclar Vivadent in transparent shade and Group C dual-cure resin cement - Clearfil esthetic cement EX by Kuraray in clear shade were used to compare their colour stability. A spectrophotometer was used for the colour measurements of the specimens before and after accelerated ageing. The colour stability was determined by colour differences (ΔE) using the coordinates L*, a* and b* in the pre and post accelerated ageing. Results: On comparing the three resin cements, Group A showed the lowest ΔE, whereas the highest ΔE was observed in Group B. This finding was constant for discs of both thicknesses.<h4>Conclusion</h4>Even though statistically significant results were observed between the groups, they were not visibly differentiable.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • cement
  • Lithium
  • aging
  • ceramic
  • resin
  • liquid chromatography