Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jaramillo, L.

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Caracterización de la flexión y compresión de elementos estructurales huecos fabricados con láminas de Tetra Pak® reciclado y cálculo aproximado de la huella de carbono producida en su elaboración4citations

Places of action

Chart of shared publication
Rubio, J.
1 / 2 shared
Quintero, M.
1 / 1 shared
Rodríguez, P.
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Rubio, J.
  • Quintero, M.
  • Rodríguez, P.
OrganizationsLocationPeople

article

Caracterización de la flexión y compresión de elementos estructurales huecos fabricados con láminas de Tetra Pak® reciclado y cálculo aproximado de la huella de carbono producida en su elaboración

  • Rubio, J.
  • Quintero, M.
  • Rodríguez, P.
  • Jaramillo, L.
Abstract

<p>The present research summarizes the test results of mechanical capacity of built-up structural elements, intending to introduce the possibility of using RTPBB as material for creating structural solutions for temporary housing, and for small houses. Hollow columns and beams models helped in understanding theoretical behavior by using nonlinear stress-strain relations of the material, and finite element models (FEM) to determine the areas where stresses and deformations are principal. Optimum thickness boards of about 15mm helped to build the specimens, which afterwards were failed using and MTS testing machine, following monotonic loads. Tests performed, mainly focused on compression and bending, using hinged supports and a central two-points-loading arrangement respectively. Additionally the research presents a basic comparison of mechanical results to those reported by technical manuals of commercial plywood in Colombia. In a parallel analysis, a functional unit defined, helped in the estimation of the carbon dioxide footprint equivalent for various steps of the production processes of the base material. Results show that although the RTPBB has a low elastic behavior, stresses remain below the ultimate stress. Column failure tends to be brittle compared to that failure for the bending resistant elements. However, the presence of local buckling suggests also the means needed to improve said capacity. Failure loads are similar to those reported for commercial plywood in Colombia, however, experiencing larger deformations. The carbon footprint was determined to be reduced about 20% (production of the material used in this research), compared to commercial plywood material in Colombia.</p>

Topics
  • Carbon