Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Casals, Marcel Vilches

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Timber grading of pinus uncinata, a lesser known pine species from the Pyrenean mountain rangecitations

Places of action

Chart of shared publication
Modol, Eduard Correal
1 / 1 shared
Langbour, Patrick
1 / 5 shared
Sera, Jordi Gené
1 / 1 shared
Montero, Cédric
1 / 9 shared
Thibaut, Bernard
1 / 11 shared
Burgers, Agnès
1 / 2 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Modol, Eduard Correal
  • Langbour, Patrick
  • Sera, Jordi Gené
  • Montero, Cédric
  • Thibaut, Bernard
  • Burgers, Agnès
OrganizationsLocationPeople

article

Timber grading of pinus uncinata, a lesser known pine species from the Pyrenean mountain range

  • Casals, Marcel Vilches
  • Modol, Eduard Correal
  • Langbour, Patrick
  • Sera, Jordi Gené
  • Montero, Cédric
  • Thibaut, Bernard
  • Burgers, Agnès
Abstract

Timber grading is an essential step into the value process to determine wood usability for structural uses. It requires well-described characteristics obtained easily by taking non-destructive measurements to quantify reliable indicators of mechanical properties. In this paper we present an approach based on both timber scale and clear-wood scale measurements using the case of Mountain Pine (Pinus uncinata). An important experimental plan have been performed from collected trees of French and Spain Pyrenean regions allowing significantly the use of inter-correlations between measurements. The physical properties of clear wood present an important adaptation of tree growth condition with a lower modulus of elasticity (MOE) as a consequence of microstructure at cell-wall level but a conventional modulus or rupture (MOR) in bending for pines. However, the results on timber presents an important the difference between visual and machine grading for this species in view of mechanical properties considered. The results obtained also show possible improvement and limitations of current regulation in the grading mountain pine timber for structural use.

Topics
  • impedance spectroscopy
  • microstructure
  • elasticity
  • wood