People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Candelier, Kévin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Heat treatment of poplar plywood: modifications in physical, mechanical and durability propertiescitations
- 2021Assessment of catalytic torrefaction promoted by biomass potassium impregnation through performance indexescitations
- 2021A potassium responsive numerical path to model catalytic torrefaction kineticscitations
- 2020Anti-fungal and anti-termite activity of extractives compounds from thermally modified ash woodscitations
- 2019Termite and decay resistance of bioplast-spruce green wood-plastic compositescitations
- 2018Comparative study of local Tunisian woods properties and the respective qualities of their charcoals produced by a new industrial eco-friendly carbonization processcitations
- 2017Some physical and mechanical characterization of Tunisian planted #Eucalytus loxophleba# and #Eucalyptus salmonophloia# woods
- 2017Developing biocomposites panels from food packaging and textiles wastes: Physical and biological performancecitations
- 2017Resistance of thermally modified ash (#Fraxinus excelsior# L.) wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termitescitations
- 2016Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysiscitations
- 2016Control of wood thermal treatment and its effects on decay resistance: a reviewcitations
- 2015Heat treatment of tunisian soft wood species: effect on the durability, chemical modifications and mechanical propertiescitations
- 2015Impact of location and forestry conditions on some physical and mechanical properties of northern Tunisian #Pinus pinea# L. woodcitations
- 2015Mechanical characterization of heat-treated ash wood in relation with structural timber standards
- 2015Utilization of temperature kinetics as a method to predict treatment intensity and corresponding treated wood quality: Durability and mechanical properties of thermally modified woodcitations
- 2014Advantage of vacuum versus nitrogen to achieve inert atmosphere during softwood thermal modification
- 2013Utilization of TG-DSC to study thermal degradation of beech and silver fir
- 2013Effect of the nature of the inert atmosphere used during thermal treatment on chemical composition, decay durability and mechanical properties of wood
- 2013Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: Nitrogen or vacuumcitations
- 2013Comparison of mechanical properties of heat treated beech wood cured under nitrogen or vacuumcitations
Places of action
Organizations | Location | People |
---|
article
Utilization of temperature kinetics as a method to predict treatment intensity and corresponding treated wood quality: Durability and mechanical properties of thermally modified wood
Abstract
Wood heat treatment is an attractive alternative to improve decay resistance of wood species with low natural durability. However, this improvement of durability is realized at the expense of the mechanical resistance. Decay resistance and mechanical properties are strongly correlated to thermal degradation of wood cells wall components. Mass loss resulting from this degradation is a good indicator of treatment intensity and final treated wood properties. However, the introduction of a fast and accurate system for measuring this mass loss on an industrial scale is very difficult. Nowadays, many studies are conducted on the determination of control parameters which could be correlated with the treatment conditions and final heat treated wood quality such as decay resistance. The aim of this study is to investigate the relations between kinetics of temperature used during thermal treatment process representing heat treatment intensity, mass losses due to thermal degradation and conferred properties to heat treated wood. It might appear that relative area of treatment temperature curves is a good indicator of treatment intensity. Heat treatment with different treatment conditions (temperature-time) have been performed under vacuum, on four wood species (one hardwood and three softwoods) in order to obtain thermal degradation mass loses of 8, 10 and 12%. For each experiment, relative areas corresponding to temperature kinetics, mass loss, decay resistance and mechanical properties have been determined. Results highlight the statement that the temperature curves' area constitutes a good indicator in the prediction of needed treatment intensity, to obtain required wood durability and mechanical properties such as bending resistance and Brinell hardness.