People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Jiehua
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Semi-analytical and experimental heat input study of additively manufactured Zr-based bulk metallic glasscitations
- 2024Investigation on the Duration of Action of Mg3N2 as a Grain Refiner for AZ80 Alloycitations
- 2023Effect of Ca and P on the Size and Morphology of Eutectic Mg2Si in High-Purity Al-Mg-Si Alloyscitations
- 2023Revealing effects of solute Ta on solidification and precipitation of Al-7Si-0.3Mg based alloyscitations
- 2023Effect of Mn addition on microstructure, mechanical properties and die soldering of rheocasting Al-7Si-0.3Mg alloys
- 2023Effect of Eu and P additions with Ta grain refiner on the solidification microstructure of Al-7Si-0.3Mg alloyscitations
- 2023Silicon Poisoning and Effects of Tantalum on AlSi Alloyscitations
- 2023A Comparison of Microstructure and Casting Defects of Rheocasting and Thixocasting Al-Si-Mg Alloy
- 2022Using Recycled Materials for Semi-Solid Processing of Al-Si-Mg Based Alloys
- 2022Effect of Solute Ta on Grain Refinement of Al-7Si-0.3Mg Based Alloyscitations
- 2022Elucidation of formation and transformation mechanisms of Ca-rich Laves phase in Mg-Al-Ca-Mn alloyscitations
- 2021The nucleation sequence of α-Al on TiB2 particles in Al-Cu alloyscitations
- 2021Einfluss von Tantal auf die Kornfeinung einer Al10SiMg Legierung
- 2019Eutectic modification by ternary compound cluster formation in Al-Si alloyscitations
- 2019Precipitation microstructure in Al-Si-Mg-Mn alloy with Zr additionscitations
- 2017Phase Decomposition of a Single-Phase AlTiVNb High-Entropy Alloy after Severe Plastic Deformation and Annealingcitations
- 2017The enhanced theta-prime (θ′) precipitation in an Al-Cu alloy with trace Au additionscitations
- 2016Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloyscitations
- 2014Influence of dendritic morphology on the calculation of macrosegregation in steel ingotcitations
Places of action
Organizations | Location | People |
---|
document
Effect of Solute Ta on Grain Refinement of Al-7Si-0.3Mg Based Alloys
Abstract
<p>Different Ta concentrations together with stochiometric grain refiner (Al-2.2Ti-1B) in Al-Si-Mg based alloys were investigated with the aim to elucidate grain refinement mechanisms. Post-solidification microstructure was characterised using optical microscopy and scanning electron microscopy (SEM), with a special focus on the Ta-rich layer (more likely to be Al3Ta) on the basal planes (0001) of TiB2. A significant grain refinement was observed by using the solute Ta together with stochiometric grain refiner (Al-2.2Ti-1B). In order to further elucidate the formation of Ta-rich layer on the basal planes (0001) of TiB2, the Density Functional Theory (DFT) calculation were also performed to determine the interface energies of different interfaces and sandwich configurations, including Al (111), Al3Ti (112) and Al3Ta (112) at the interface of TiB2 basal plane (0001). It was found that the interface energy for Ti-terminated TiB2 at the interface throughout all configurations involved in this paper is lower than that for B-terminated TiB2, indicating that Ti-terminated TiB2 is more favourable. It was also found that the Al3Ta configuration yields the same interface energies as the Al3Ti configuration. Furthermore, the interface energy of the sandwich configuration also shows nearly identical values along the TiB2 // Al3Ti and TiB2 // Al3Ta interface energy, strongly indicating that the solute Ti can be fully replaced by the solute Ta.</p>