People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ťažký, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Study of the effect of consistency on the abrasion resistance of concretecitations
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2021New Possibilities of Determining the Resistance of Cement Composite to Abrasion by Fast Flowing Water
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Effect of type of aggregate on abrasion resistance of concrete
- 2016Influence of Use Fluidized Fly Ash Combined with High Temperature Fly Ash on Microstructure of Cement Compositecitations
- 2016Reduction of concrete´s shrinkage by controlled formation of monosulphate and trisulphate
- 2016POSSIBILITIES OF DETERMINATION OF OPTIMAL DOSAGE OF POWER PLANT FLY ASH FOR CONCRETEcitations
- 2016Concrete with Fluidized Bed Combustion Fly Ash Based Light Weight Aggregatecitations
Places of action
Organizations | Location | People |
---|
document
Concrete with Fluidized Bed Combustion Fly Ash Based Light Weight Aggregate
Abstract
One possible way of fluidized bed combustion fly ash’s utilizing in construction industry is the production of cold balled lightweight aggregate. Production of this material is economically advantageous and enables processing of large volumes of raw materials. This paper describes possibilities of using this aggregate for production of lightweight concrete of lower compressive strength classes and consequent testing of durability and resistance to various types of aggressive environment and cyclical freezing and thawing. Physico-mechanical properties and microscopic defects were also studied.