People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Phang, Sieu Pheng
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Electron contact interlayers for low‐temperature‐processed crystalline silicon solar cellscitations
- 2022Gettering in silicon photovoltaicscitations
- 2021Investigation of Gallium-Boron Spin-On Codoping for poly-Si/SiOx Passivating Contactscitations
- 201922.6% Efficient Solar Cells with Polysilicon Passivating Contacts on n-type Solar-Grade Waferscitations
- 2018Effective impurity gettering by phosphorus- and boron-diffused polysilicon passivating contacts for silicon solar cellscitations
- 2018Impurity Gettering by Diffusion-doped Polysilicon Passivating Contacts for Silicon Solar Cellscitations
- 2015Charge states of the reactants in the hydrogen passivation of interstitial iron in P-type crystalline siliconcitations
- 2014External and internal gettering of interstitial iron in silicon for solar cellscitations
- 2014The impact of SiO2/SiNrm x stack thickness on laser doping of silicon solar cellcitations
- 2013Secondary electron microscopy dopant contrast image (SEMDCI) for laser dopingcitations
- 2012Investigating internal gettering of iron at grain boundaries in multicrystalline silicon via photoluminescence imagingcitations
Places of action
Organizations | Location | People |
---|
document
External and internal gettering of interstitial iron in silicon for solar cells
Abstract
<p>The removal of dissolved iron from the wafer bulk is important for the performance of ptype multicrystalline silicon solar cells. In this paper we review some recent progress in understanding both external and internal gettering of iron. Internal gettering at grain boundaries and dislocations occurs naturally during ingot cooling, and can also be driven further during cell processing, especially by moderate temperature anneals (usually below 700 °C). Internal gettering at intra-grain defects plays key a role during such precipitation annealing. External gettering to phosphorus diffused regions is crucial in reducing the dissolved iron concentration during cell processing, although its effectiveness depends strongly on the diffusion temperature and profile. Gettering of Fe by boron and aluminum diffusions is also found to be very effective under certain conditions.</p>