People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hou, X.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Additional grain boundary strengthening in length-scale architectured copper with ultrafine and coarse domainscitations
- 2016Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealingcitations
- 2012Numerical modelling of thermally bonded nonwovenscitations
- 2011Non-uniformity of deformation in low-density thermally point bonded non-woven material: Effect of microstructurecitations
- 2011Finite element simulation of low-density thermally bonded nonwoven materials: Effects of orientation distribution function and arrangement of bond pointscitations
- 2009Tensile behavior of low density thermally bonded nonwoven material
- 20092D finite element analysis of thermally bonded nonwoven materialscitations
Places of action
Organizations | Location | People |
---|
article
Numerical modelling of thermally bonded nonwovens
Abstract
Nonwoven fabrics are web structures of randomly-oriented fibres, bonded by means of mechanical, thermal or chemical techniques. This paper focuses on nonwovens manufactured with polymer-based fibres and bonded thermally. During thermal bonding of such fibres, as a hot calender with an engraved pattern contacts the fibre web, bond spots are formed by melting of the polymer material. As a result of this bonding process, a pattern of bond points connected with randomly oriented polymer-based fibres form the nonwoven web. Due to their manufacturing-induced composite microstructure and random orientation of fibres, nonwovens demonstrate a complex mechanical behaviour. Two distinct modelling approaches were introduced to simulate the non-trivial mechanical response of thermally bonded nonwovens based on their planar density. The first modelling approach was developed to simulate the mechanical behaviour of high-density nonwovens, and the respective fabric was modelled with shell elements with thicknesses identical to those of the bond points and the fibre matrix having distinct anisotropic mechanical properties. Random orientation of individual fibres was introduced into the model in terms of the orientation distribution function in order to determine the material’s anisotropy. The second modelling approach was introduced to simulate low-density nonwovens, and it treated the nonwoven media as a structure composed of fibres acting as truss links between bond points.