People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liliental-Weber, Z.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2013Local structure of amorphous GaN1-xAsx semiconductor alloys across the composition rangecitations
- 2013Microstructure of Mg doped GaNAs alloyscitations
- 2012Wurtzite-to amorphous-to cubic phase transition of GaN1-x Asx alloys with increasing As contentcitations
- 2012Structural studies of GaN 1-x As x and GaN 1-x Bi x alloys for solar cell applicationscitations
- 2011Structural defects and cathodoluminescence of InxGa1-xN layerscitations
- 2011GaNAs alloys over the whole composition range grown on crystalline and amorphous substratescitations
- 2010Non-equilibrium GaNAs alloys with band gap ranging from 0.8-3.4 eVcitations
- 2010Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen productioncitations
- 2010Amorphous GaN1-xAsx alloys for multi-junction solar cells
- 2010Low gap amorphous GaN1-x Asx alloys grown on glass substratecitations
- 2009Structural perfection of InGaN layers and its relation to photoluminescencecitations
- 2009Highly mismatched crystalline and amorphous GaN1-x As x alloys in the whole composition rangecitations
- 2009Electrical and electrothermal transport in InNcitations
- 2009Spontaneous stratification of InGaN layers and its influence on optical propertiescitations
- 2008Energetic Beam Synthesis of Dilute Nitrides and Related Alloyscitations
- 2008Low-temperature grown compositionally graded InGaN filmscitations
- 2006Structure and electronic properties of InN and In-rich group III-nitride alloyscitations
- 2005Structural TEM study of nonpolar a-plane gallium nitride grown on (1120) 4H-SiC by organometallic vapor phase epitaxycitations
- 2005Transmission electron microscopy study of nonpolar a-plane GaN grown by pendeo-epitaxy on (11(2)under-bar0) 4H-SiC
- 2004Characterization and manipulation of exposed Ge nanocrystals
- 2003Diluted magnetic semiconductors formed by ion implantation and pulsed-laser meltingcitations
- 2003Growth and characterization of epitaxial GaN thin films on 4H-SiC (11.0) substrates
- 2003Synthesis of GaNxAs1-x thin films by pulsed laser melting and rapid thermal annealing of N+-implanted GaAscitations
- 2003Microstructure of nonpolar a-plane GaN grown on (1120) 4H-SiC investigated by TEM.
- 2002Transparent ZnO-based ohmic contact to p-GaNcitations
Places of action
Organizations | Location | People |
---|
document
Wurtzite-to amorphous-to cubic phase transition of GaN1-x Asx alloys with increasing As content
Abstract
This paper describes Transmission Electron Microscopy studies of the structural changes of GaN<sub>1-x</sub>As<sub>x</sub> alloys grown by Molecular Beam Epitaxy at low temperatures on Al2O3 substrate. We found that by lowering the growth temperature increasing amount of As can be incorporated in GaN <sub>1-x</sub>As<sub>x</sub> forming a single phase alloy. For the low As content a columnar growth of wurtzite structure is observed but for increasing As in the range of 0.170.75 the layer becomes amorphous. Increase in Ga flux at low growth temperature (about 200°C) leads to columnar alloys with As content >75% with a cubic structure. In addition to the structural changes monotonic change of the band gap is also observed with the As content in the alloy. The amorphous alloy is stable up to annealing at temperatures not higher than 600°C. Annealing at higher temperature leads to phase separation of GaAs:N and GaN:As confirmed by Z-contrast electron microscopy. © (2012) Trans Tech Publications, Switzerland.