People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jaroszewicz, Jakub
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023In vitro and in vivo degradation behavior of Mg-0.45Zn-0.45Ca (ZX00) screws for orthopedic applicationscitations
- 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ compositescitations
- 2023In-depth analysis of the influence of bio-silica filler (Didymosphenia geminata frustules) on the properties of Mg matrix compositescitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusioncitations
- 2022Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objectscitations
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2021Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glasscitations
- 2020Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputteringcitations
- 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Meltingcitations
- 2020Functionalization of 3D Chitinous Skeletal Scaffolds of Sponge Origin Using Silver Nanoparticles and Their Antibacterial Propertiescitations
- 2019Microstructure and corrosion resistance of warm sprayed titanium coatings with polymer sealing for corrosion protection of AZ91E magnesium alloycitations
- 2019Corrosion Resistance of Aluminum Coatings Deposited by Warm Spraying on AZ91E Magnesium Alloycitations
- 20193D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing headcitations
- 2019Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defectscitations
- 2018Micro and nanoscale characterization of poly(DL-lactic-co-glycolic acid) films subjected to the L929 cells and the cyclic mechanical loadcitations
- 2016In vitro degradation of ZM21 magnesium alloy in simulated body fluidscitations
- 2016Characterization of three-dimensional printed composite scaffolds prepared with different fabrication methodscitations
- 2015Influence of the Al (Co, Ni) layer on the corrosion resistance of a cobalt based alloy (Mar-M-509®)citations
- 2013Investigation of degradation mechanism of palladium-nickel wires during oxidation of ammoniacitations
- 2006Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Methodcitations
- 2006Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Techniquecitations
- 2006NiAl–Al2O3 composites produced by pulse plasma sintering with the participation of the SHS reactioncitations
Places of action
Organizations | Location | People |
---|
article
Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Technique
Abstract
The paper presents the results of examination of the structure and properties of nanocrystalline Cu-Al2O3 composites with the two different Al2O3 contents: 10 and 20 vol.%. The composites were produced using a mixture of copper and Al2O3 powders with an average crystallite size of about 60nm for Cu and about 40nm for Al2O3. The powders were consolidated by pulse plasma sintering (PPS) for 5 minutes at a temperature of 650oC under a load of 60 MPa. Irrespective of the volumetric content of Al2O3, the relative density of the composites was about 92%, and the average Cu crystallite size was about 80nm. The hardness of the composites varied with the volumetric content of Al2O3, and was equal to 270 HV0.1 for 20 and to 240 HV0.1 for 10% of Al2O3. The Cu-20%Al2O3 composite had a resistivity of 0.386 while that with 10% of Al2O3 was 0.149 56m.