People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siemiaszko, Dariusz
Military University of Technology in Warsaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2019The influence of large particles of iron powder on the microstructure and properties of FeAl intermetallic phasecitations
- 2015Kinetics study on the SHS reaction in massive samples with high heating rate in the Fe–Al systemcitations
- 2015The Effect of Oxygen Partial Pressure on Microstructure and Properties of Fe40Al Alloy Sintered under Vacuum.citations
- 2013Influence of temperature during pressure-assisted induction sintering (PAIS) on structure and properties of the Fe40Al intermetallic phasecitations
- 2010Nanocrystalline WC with non-toxic Fe-Mn bindercitations
- 2008Heat Sink Materials Processing by Pulse Plasma Sinteringcitations
- 2007Nanocrystalline cemented carbides sintered by the pulse plasma methodcitations
- 2006Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Methodcitations
- 2006Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Techniquecitations
- 2006NiAl–Al2O3 composites produced by pulse plasma sintering with the participation of the SHS reactioncitations
Places of action
Organizations | Location | People |
---|
article
Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Technique
Abstract
The paper presents the results of examination of the structure and properties of nanocrystalline Cu-Al2O3 composites with the two different Al2O3 contents: 10 and 20 vol.%. The composites were produced using a mixture of copper and Al2O3 powders with an average crystallite size of about 60nm for Cu and about 40nm for Al2O3. The powders were consolidated by pulse plasma sintering (PPS) for 5 minutes at a temperature of 650oC under a load of 60 MPa. Irrespective of the volumetric content of Al2O3, the relative density of the composites was about 92%, and the average Cu crystallite size was about 80nm. The hardness of the composites varied with the volumetric content of Al2O3, and was equal to 270 HV0.1 for 20 and to 240 HV0.1 for 10% of Al2O3. The Cu-20%Al2O3 composite had a resistivity of 0.386 while that with 10% of Al2O3 was 0.149 56m.