Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malard, Virgil

  • Google
  • 3
  • 7
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Atomisation of Ti-Al and Nb-Si alloys by EIGA: homogeneity of powders and materials sintered by SPS ; Atomisation par EIGA d'alliages à base de Ti-Al et de Nb-Si : homogénéité des poudres et des matériaux frittés par SPScitations
  • 2022Microstructure characterization of high temperature mechanisms in a Nb–Ti–Si alloy ; Caractérisation de la microstructure et des mécanismes à haute température dans un alliage Nb-Ti-Si10citations
  • 2018From Pre-Alloyed Rod to Gas-Atomized Powder and SPS Sintered Samples: How the Microstructure of an Nb Silicide Based Alloy Evolves2citations

Places of action

Chart of shared publication
Drawin, Stefan
2 / 4 shared
Deborde, Agathe
1 / 5 shared
Thomas, Marc
1 / 24 shared
Hammes, Raphaël
1 / 2 shared
Reyes, David
1 / 1 shared
Couret, Alain
1 / 37 shared
Monchoux, Jean-Philippe
1 / 36 shared
Chart of publication period
2023
2022
2018

Co-Authors (by relevance)

  • Drawin, Stefan
  • Deborde, Agathe
  • Thomas, Marc
  • Hammes, Raphaël
  • Reyes, David
  • Couret, Alain
  • Monchoux, Jean-Philippe
OrganizationsLocationPeople

article

From Pre-Alloyed Rod to Gas-Atomized Powder and SPS Sintered Samples: How the Microstructure of an Nb Silicide Based Alloy Evolves

  • Malard, Virgil
Abstract

<jats:p>This work investigates the evolution of the microstructure of an Nb-23Ti-20Si (at.%) based alloy, from the primary plasma-melted material that is gas-atomized towards the consolidated material (here using SPS). The nature, morphology and size of the solid solution and the various silicides are followed by SEM, EDS and EBSD. Homogenous and fine microstructures are obtained after the SPS step and are improved by a subsequent heat treatment (1500°C, 100 h). However blocky silicides, already present in the powder particles, cannot be eliminated. A better control of the primary material’s microstructure would improve the microstructure of the final material.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • morphology
  • scanning electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • electron backscatter diffraction
  • silicide