Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Faria, Rubens Nunes De

  • Google
  • 3
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Effect of Hydrogen Decrepitation Pressure on the Particle Size of Rare Earth Based Alloys for Ni-Mh Battery Productioncitations
  • 2008The Effect of Niobium Content on the Curie Temperature and Microstructure of the Pr14Fe79.9-xCoB6Nbx Alloyscitations
  • 2006The Influence of Si, Ga and Gd Content on the Magnetic Properties of Pr-Fe-Co-B-Nb HDDR Bonded Magnetscitations

Places of action

Chart of shared publication
Casini, Julio Cesar Serafim
1 / 1 shared
Vieira, Ligia Silverio
1 / 1 shared
Silva, Franks Martins
1 / 1 shared
Soares, Edson Pereira
1 / 1 shared
Takiishi, Hidetoshi
1 / 11 shared
Chart of publication period
2018
2008
2006

Co-Authors (by relevance)

  • Casini, Julio Cesar Serafim
  • Vieira, Ligia Silverio
  • Silva, Franks Martins
  • Soares, Edson Pereira
  • Takiishi, Hidetoshi
OrganizationsLocationPeople

article

Effect of Hydrogen Decrepitation Pressure on the Particle Size of Rare Earth Based Alloys for Ni-Mh Battery Production

  • Casini, Julio Cesar Serafim
  • Vieira, Ligia Silverio
  • Silva, Franks Martins
  • Faria, Rubens Nunes De
  • Soares, Edson Pereira
  • Takiishi, Hidetoshi
Abstract

<jats:p>This paper presents the results obtained from the hydrogenation and decrepitation of three LaNi-based alloys, La<jats:sub>0.7</jats:sub>Mg<jats:sub>0.3</jats:sub>Al<jats:sub>0.3</jats:sub>Mn<jats:sub>0.4</jats:sub>Co<jats:sub>0.5</jats:sub>Ni<jats:sub>3.8</jats:sub>, La<jats:sub>0.7</jats:sub>Mg<jats:sub>0.3</jats:sub>Al<jats:sub>0.3</jats:sub>Mn<jats:sub>0.4</jats:sub>Cu<jats:sub>0.5</jats:sub>Ni<jats:sub>3.8</jats:sub>and La<jats:sub>0.7</jats:sub>Mg<jats:sub>0.3</jats:sub>Al<jats:sub>0.3</jats:sub>Mn<jats:sub>0.4</jats:sub>Sn<jats:sub>0.5</jats:sub>Ni<jats:sub>3.8</jats:sub>, in the as-cast condition. The procedure for decrepitating the alloys to be used in the negative electrode of the batteries was carried out using a combination of various hydrogen pressures (2-9 bar) at room temperature. At 2 bar of H<jats:sub>2</jats:sub>it was revealed that Co, Cu and Sn have influence on the microstructures of the hydrogenated alloys and on the efficiency of hydrogen decrepitation. None of these alloys required thermal heating to activate and start the hydrogen absorption process. The decrepitated materials were characterized by scanning electron microscopy (SEM). The electrochemical measurements were performed using the tested negative electrode between two Ni (OH)<jats:sub>2</jats:sub>electrodes as a battery cell.</jats:p>

Topics
  • microstructure
  • scanning electron microscopy
  • Hydrogen