Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nursam, Natalita

  • Google
  • 3
  • 5
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Unraveling the Performance of All‐Inorganic Lead‐Free CsSnI<sub>3</sub>‐Based Perovskite Photovoltaic with Graphene Oxide Hole Transport Layer11citations
  • 2019Development of Lower Cost Monolithic Dye-Sensitized Solar Cell with Carbon Counter-Electrodecitations
  • 2018Improving the Efficiency of Perovskite Solar Cell through the Addition of Compact Layer under TiO<sub>2</sub> Electron Transfer Materialcitations

Places of action

Chart of shared publication
Driyo, Cipto
1 / 1 shared
Widianto, Eri
1 / 1 shared
Shobih, Shobih
1 / 1 shared
Hanna, Muhammad Yusrul
1 / 1 shared
Sudarsono, Sudarsono
1 / 2 shared
Chart of publication period
2023
2019
2018

Co-Authors (by relevance)

  • Driyo, Cipto
  • Widianto, Eri
  • Shobih, Shobih
  • Hanna, Muhammad Yusrul
  • Sudarsono, Sudarsono
OrganizationsLocationPeople

article

Improving the Efficiency of Perovskite Solar Cell through the Addition of Compact Layer under TiO<sub>2</sub> Electron Transfer Material

  • Nursam, Natalita
Abstract

<jats:p>In the fabrication of perovskite solar cells, the perovskite layer is typically deposited onto the TiO<jats:sub>2</jats:sub> semiconductor layer. The TiO<jats:sub>2</jats:sub> layer serves as an electron transport material (ETM). In order to form the perovskite layer firmly and evenly, a structured mesoporous (MS) TiO<jats:sub>2 </jats:sub>surface is required. A porous layer could also make the electrons move more quickly through the pores to reach the contact. However, the electron-hole recombination and electron trapping in the dead end pore are still occurred. One of the solutions to overcome this problem is to add a thin compact layer (CL)-TiO<jats:sub>2</jats:sub> under MS-TiO<jats:sub>2</jats:sub> layer. The CL-TiO<jats:sub>2</jats:sub> is expected as to prevent recombination and attract electrons trapped in the MS-TiO<jats:sub>2</jats:sub> layer. In this paper, we report the addition of a thin compact layer (CL)-TiO<jats:sub>2</jats:sub> under MS-TiO<jats:sub>2</jats:sub> layer in the fabrication of perovskite solar cells based on methyl ammonium lead iodide (CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbI<jats:sub>3</jats:sub>). The compact layer TiO<jats:sub>2</jats:sub> was grown under mesoporous TiO<jats:sub>2</jats:sub> layer by dip-coating in TiCl<jats:sub>4</jats:sub> solution. The time of the dip coating was varied to obtain an optimum efficiency improvement. The structure of the device is glass/FTO/CL-TiO<jats:sub>2</jats:sub>/MS-TiO<jats:sub>2</jats:sub>/ CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbI<jats:sub>3</jats:sub>/Spiro-OMeTAD/Ag/FTO/glass. It was concluded that the addition of CL-TiO<jats:sub>2</jats:sub> can improve the perovskite solar cells power conversion efficiencies. The best efficiency was obtained from the 15 minutes dip-coating, which corresponded to the thinnest CL-TiO<jats:sub>2</jats:sub> out of all samples. The electrical characterization performed under irradiation with an intensity of 50 mW/cm<jats:sup>2</jats:sup> at 25 °C generated an open circuit voltage of 0.28 V, a short circuit current density of 0.25 mA/cm<jats:sup>2</jats:sup> and a power conversion efficiency of 0.60 %.</jats:p>

Topics
  • porous
  • density
  • perovskite
  • impedance spectroscopy
  • pore
  • surface
  • glass
  • semiconductor
  • glass
  • mass spectrometry
  • current density
  • power conversion efficiency
  • dip coating