People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigues Pais Alves, Manuel Fellipe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Microstructural Characteristics of 3Y-TZP Ceramics and Their Effects on the Flexural Strengthcitations
- 2021Reactive Sintering of Al2O3–Y3Al5O12 Ceramic Composites Obtained by Direct Ink Writingcitations
- 2018Characterization of Al<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>TiO<sub>2</sub> Ceramic Composites: Effects of Sintering Parameters on the Propertiescitations
- 2018Ceramics and Glass-Ceramics Dental Materials: Chemical Solubility, Cytotoxicity and Mechanical Propertiescitations
- 2018Development and Characterization of Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub> Composites Using ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>)-Recycled as Raw Materialcitations
Places of action
Organizations | Location | People |
---|
article
Ceramics and Glass-Ceramics Dental Materials: Chemical Solubility, Cytotoxicity and Mechanical Properties
Abstract
<jats:p>In this work three dental ceramics were characterized according to ISO 6872: yttria-stabilized zirconia (ZrO<jats:sub>2</jats:sub>-Y<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>), lithium disilicate (Li<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>) and the spinel-zirconia composite (MgAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>-ZrO<jats:sub>2</jats:sub>). The zirconia ceramic and the zirconia-spinel composite were sintered at 1600°C-2h, while the lithium disilicate was thermally treated at 820°C-20min. These materials were characterized by relative density, X-ray diffraction, scanning electron microscopy, hardness, fracture toughness, chemical solubility and cytotoxicity. The XRD results showed for the stabilized zirconia only the tetragonal phase of ZrO<jats:sub>2</jats:sub>, and to the composite only the phase MgAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>, Li<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> was the only phase to lithium disilicate. Relative density results showed that the zirconia and the lithium disilicate showed high densification (> 99.5%) and the composite had a relative density of 75% (10% composite doped with ZrO<jats:sub>2</jats:sub>) and 90% (50% doped with ZrO<jats:sub>2</jats:sub>). Hardness and toughness showed 450HV and 3.2MPa.m<jats:sup>1/2</jats:sup> to ZrO<jats:sub>2</jats:sub>-MgAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> composites, 525HV and 1.8MPam<jats:sup>1/2</jats:sup> to lithium disilicate and 1280HV and 8.0MPa.m<jats:sup>1/2</jats:sup> to zirconia. The materials evaluated showed chemical solubility <30μg/cm<jats:sup>2</jats:sup> and the results of cytotoxicity tests indicated cell viability of the samples near 100% for all the materials, showing good chemical stability and potential for dental applications.</jats:p>