Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Opálek, Andrej

  • Google
  • 2
  • 8
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Ni-NiO Porous Preform with Controlled Porosity Using Al<sub>2</sub>O<sub>3</sub> Powder1citations
  • 2017Microstructure and Erosion Resistance of Zirconium Diboride Ceramics Infiltrated by Pure Coppercitations

Places of action

Chart of shared publication
Stanislav Kúdela, Jr.
1 / 2 shared
Klimová, Alena
1 / 2 shared
Iždinský, Karol
2 / 4 shared
Beronská, Naďa
2 / 6 shared
Nagy, Štefan
2 / 2 shared
Štefánik, Pavol
2 / 5 shared
Kollarovičová, Andrea
1 / 2 shared
Kavecký, Štefan
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Stanislav Kúdela, Jr.
  • Klimová, Alena
  • Iždinský, Karol
  • Beronská, Naďa
  • Nagy, Štefan
  • Štefánik, Pavol
  • Kollarovičová, Andrea
  • Kavecký, Štefan
OrganizationsLocationPeople

article

Ni-NiO Porous Preform with Controlled Porosity Using Al<sub>2</sub>O<sub>3</sub> Powder

  • Stanislav Kúdela, Jr.
  • Opálek, Andrej
  • Klimová, Alena
  • Iždinský, Karol
  • Beronská, Naďa
  • Nagy, Štefan
  • Štefánik, Pavol
Abstract

<jats:p>The Ni-NiO skeleton seems to be a good candidate for various applications in industry such as corrosion-proof filters or components in refrigerating systems and as preforms for reactive infiltration with molten metals.The present work was focused on preparation of Ni-NiO composite with higher, controlled porosity. Sintering of pure Ni powder always leads to a substantial closed porosity in almost whole sample volume [1,2]. To eliminate this, we added Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particles with diameter of-32 +20 μm into the Ni powder (-75 +45 μm diameters) and sintered this loose powder mixture (Ni + 25 vol. % Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) in air by progressive heating up to 800 °C followed by 2 hours isothermal exposure. As a control, pure Ni powder was sintered under the same conditions. Thermal oxidation of loose powder samples performed in alumina crucible indicates that the strongest oxidation occurred in the top part of sample, while the bottom part was the least oxidized. Therefore, it was necessary to run the thermal oxidation once more, but out of the crucible, to ensure the sufficient diffusion of oxygen to the whole volume of sample.</jats:p>

Topics
  • porous
  • corrosion
  • Oxygen
  • reactive
  • composite
  • porosity
  • sintering