People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Talib, Norfazillah
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2021The performance of modified Jatropha-based nanofluid during turning processcitations
- 2021Experimental analysis of tribological performance of modified Jatropha oil enriched with nanoparticle additives for machining application
- 2020Tribological Analyses of Modified Jatropha Oil with hBN and Graphene Nanoparticles as An Alternative Lubricant for Machining Processcitations
- 2020Tribological Assessment of Modified Jatropha Oil with hBN and Graphene Nanoparticles as a New Preference for the Metalworking fluidcitations
- 2018Investigation on the Tribological Behaviour of Modified Jatropha Oil with Hexagonal Boron Nitride Particles as a Metalworking Fluid for Machining Processcitations
- 2017Tribological Evaluation on Various Formulation of Modified RBD Palm Olein as Sustainable Metalworking Fluids for Machining Processcitations
- 2017Performance evaluation of biodegradable metalworking fluids for machining process
- 2017Tribological evaluation of hexagonal boron nitride in modified jatropha oil as sustainable metalworking fluidcitations
- 2016The Effect of Tribology Behavior on Machining Performances When Using Bio-based Lubricant as a Sustainable Metalworking Fluidcitations
- 2015Performance Evaluation of Chemically Modified Crude Jatropha Oil as a Bio-based Metalworking Fluids for Machining Processcitations
- 2014The Performance of Modified Jatropha-Oil Based Trimethylolpropane (TMP) Ester on Tribology Characteristic for Sustainable Metalworking Fluids (MWFs)citations
- 2013Effect of Pouring Temperature on Microstructure Properties of Al-Si LM6 Alloy Sand Castingcitations
- 2011Experimental study of vortex flow induced by a vortex well in sand castingcitations
Places of action
Organizations | Location | People |
---|
article
Tribological Evaluation on Various Formulation of Modified RBD Palm Olein as Sustainable Metalworking Fluids for Machining Process
Abstract
Sustainable manufacturing has become popular among manufacturers and industrialists due to the increase in environmental issues, health impacts and stringent law enforcement. The use of vegetable oils as metalworking fluids is one way to implement manufacturing sustainability. Palm oils are commonly used as cooking oils. Further, palm oil is also the main oil sources in Southeast Asia besides petroleum. Therefore, the potential use of palm oil as functional lubricant for future replacement of petroleum-based oil is indeed important. In this study, the refined, bleached and deodorized (RBD) palm olein has been formulated into various properties of modified RBD palm oil (MRPO) by transesterification process at different molar ratio of RBD methyl ester (FAME) with trimethylolpropane (TMP). Next, the MRPOs are compared with synthetic ester on lubrication and tribology tests according to standard based on American Society for Testing and Materials (ASTM). The results observed that MRPO have outstanding performance in lubrication and tribological behavior. MRPO2 recorded the highest viscosity index and the lowest coefficient of friction which are 496 and 0.06, respectively. MRPO2 showed to be an alternative biodegradable cutting fluid in promoting sustainable manufacturing activities by reducing the bad impact on environment and health.