Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kim, Kwon Hoo

  • Google
  • 1
  • 1
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Effect of Large Strain on Texture Formation Behavior of AZ80 Magnesium Alloy during High Temperature Deformation1citations

Places of action

Chart of shared publication
Fukutomi, Hiroshi
1 / 5 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Fukutomi, Hiroshi
OrganizationsLocationPeople

document

Effect of Large Strain on Texture Formation Behavior of AZ80 Magnesium Alloy during High Temperature Deformation

  • Fukutomi, Hiroshi
  • Kim, Kwon Hoo
Abstract

<jats:p>In previous study, the formation behavior of texture and microstructure in AZ80 magnesium alloy under high temperature deformation was investigated. It was found that the basal texture was formed at stress of more than 15-20MPa and the non-basal texture was formed at stress of less than 15-20MPa. This means that stress of 15-20MPa is the change point of deformation mechanism. Therefore, in this study, uniaxial compression deformation of AZ80 magnesium alloy was carried out at high temperature deformation (stress of 15-20MPa). Behaviors of microstructure and texture development are experimentally studied. The material used in this study is a commercial magnesium alloy extruded AZ80. The uniaxial compression deformation is performed at temperature of 723K and strain rate 3.0×10<jats:sup>-</jats:sup><jats:sup>3</jats:sup>s<jats:sup>-1</jats:sup>, with a strain range of between-0.4 and-1.3. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. EBSD measurement was also conducted in order to observe spatial distribution of orientation. As a result of high temperature deformation, the maximum value of the flow stress is observed at the true stress-strain curves, and the main component of texture and the accumulation of pole density vary depending on deformation condition.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • nickel
  • Magnesium
  • magnesium alloy
  • Magnesium
  • laser emission spectroscopy
  • stress-strain curve
  • texture
  • electron backscatter diffraction
  • deformation mechanism