People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fressengeas, Claude
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Complex patterning in jerky flow from time series analysis and numerical simulationcitations
- 2020Revisiting the Application of Field Dislocation and Disclination Mechanics to Grain Boundariescitations
- 2020Revisiting the Application of Field Dislocation and Disclination Mechanics to Grain Boundariescitations
- 2020A continuum model for slip transfer at grain boundaries ; Un modèle continue pour le transfert de glissement aux joints de grainscitations
- 2019Crystal plasticity modeling of the effects of crystal orientation and grain-to-grain interactions on DSA-induced strain localization in Al–Li alloyscitations
- 2019Crystal plasticity modeling of the effects of crystal orientation and grain-to-grain interactions on DSA-induced strain localization in Al–Li alloyscitations
- 2019Spatiotemporal correlations in the Portevin-Le Chatelier band dynamics during the type B - type C transitioncitations
- 2018Geometrically Nonlinear Field Fracture Mechanics and Crack Nucleation, Application to Strain Localization Fields in Al-Cu-Li Aerospace Alloyscitations
- 2018Geometrically Nonlinear Field Fracture Mechanics and Crack Nucleation, Application to Strain Localization Fields in Al-Cu-Li Aerospace Alloyscitations
- 2017On the strain rate dependence of the critical strain for plastic instabilities in Al-Mg alloyscitations
- 2017Interactions between cracks and dislocations in Al-Cu-Li alloys in presence of dynamic strain aging
- 2016Continuous Modeling of Dislocation Cores Using a Mechanical Theory of Dislocation Fields
- 2016Building compact dislocation cores in an elasto-plastic model of dislocation fieldscitations
- 2016Building compact dislocation cores in an elasto-plastic model of dislocation fieldscitations
- 2016A higher order elasto-viscoplastic model using fast Fourier transforms: Effects of lattice curvatures on mechanical response of nanocrystalline metalscitations
- 2016A higher order elasto-viscoplastic model using fast Fourier transforms: Effects of lattice curvatures on mechanical response of nanocrystalline metalscitations
- 2016A field theory of strain/curvature incompatibility for coupled fracture and plasticitycitations
- 2016A field theory of strain/curvature incompatibility for coupled fracture and plasticitycitations
- 2016Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinationscitations
- 2016Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinationscitations
- 2016Effects of grain-to-grain interactions on hear strain localization in Al-Cu-Li rolled sheetscitations
- 2016Effects of grain-to-grain interactions on hear strain localization in Al-Cu-Li rolled sheetscitations
- 2015A mesoscopic theory of dislocation and disclination fields for grain boundary-mediated crystal plasticitycitations
- 2015A mesoscopic theory of dislocation and disclination fields for grain boundary-mediated crystal plasticitycitations
- 2015On the effects of the Mg content on the critical strain for the jerky flow of Al–Mg alloyscitations
- 2014A field theory of distortion incompatibility for coupled fracture and plasticitycitations
- 2014A field theory of distortion incompatibility for coupled fracture and plasticitycitations
- 2013Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinationscitations
- 2013Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinationscitations
- 2011Grain boundary and triple junction energies in crystalline media: A disclination based approachcitations
- 2010Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jetcitations
- 2008Rearrangement of dislocation structures in the aging of ice single crystalscitations
- 2008Rearrangement of dislocation structures in the aging of ice single crystalscitations
- 2007Evidence for universal intermittent crystal plasticity from acoustic emission and high-resolution extensometry experimentscitations
Places of action
Organizations | Location | People |
---|
article
Continuous Modeling of Dislocation Cores Using a Mechanical Theory of Dislocation Fields
Abstract
<jats:p>A one-dimensional model of an elasto-plastic theory of dislocation fields is developed to model planar dislocation core structures. This theory is based on the evolution of polar dislocation densities. The motion of dislocations is accounted for by a dislocation density transport equation where dislocation velocities derive from Peach-Koehler type driving forces. Initial narrow dislocation cores are shown to spread out by transport under their own internal stress field and no relaxed configuration is found. A restoring stress of the lattice is necessary to stop this infinite relaxation and it is derived from periodic sinusoidal energy of the crystal. When using the Peierls sinusoidal potential, a compact equilibrium core configuration corresponding to the Peierls analytical solution is obtained. The model is then extended to use generalized planar stacking fault energies as an input and is applied to the determination of properties of planar dislocation cores in crystalline materials. Dissociations of edge and screw dislocation cores in basal and prismatic planes of Zirconium are shown.</jats:p>