Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krutzler, Jörg

  • Google
  • 1
  • 2
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Temperature field evolution during flash butt welding of railway rails41citations

Places of action

Chart of shared publication
Weingrill, Leonhard
1 / 1 shared
Enzinger, Norbert
1 / 96 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Weingrill, Leonhard
  • Enzinger, Norbert
OrganizationsLocationPeople

document

Temperature field evolution during flash butt welding of railway rails

  • Weingrill, Leonhard
  • Krutzler, Jörg
  • Enzinger, Norbert
Abstract

<p>Flash butt welding (FBW) of railway rails was investigated in this work. For this purpose samples of R260 rail steel and 60E1 profile were instrumented and subsequently welded on a Schlatter GAA 100 welding machine under industrial conditions. The intention is to gain in depth process knowledge by more accurately depicting thermal cycles for an entire welding sequence in the immediate proximity of the weld as well as in the heat affected zone (HAZ). A detailed characterization of the single stages of the heat up phase of the process is important. Additionally, the secondary welding voltage was measured simultaneously during the experiments to characterize the transient heat input. Moreover, these data were used in the analysis of the temperature signals to better cope with electrical interferences. Additionally, a finite element (FE) model of this FBW process was developed in the present work. Its implementation and solution is realized with the help of ESI’s FE-software SYSWELD. A strong coupled thermo-electrokinetical and metallurgical calculation routine was used. The model comprises the transition resistance at the welding surfaces as the main heat source to the process. Temperature dependent material properties and a corresponding metallurgical model based on an experimental CCT diagram of the rail steel R350HT are implemented in the simulation as well.</p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • experiment
  • simulation
  • steel
  • electrospray ionisation