Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jr, Rubens Nunes Faria

  • Google
  • 1
  • 1
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Microstructure and Electrochemical Characteristics of LaPrMgAlMnCoNi Hydrogen Storage Alloys for Nickel-Metal Hydride Batteries3citations

Places of action

Chart of shared publication
Zarpelon, Lia Maria Carlotti
1 / 2 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Zarpelon, Lia Maria Carlotti
OrganizationsLocationPeople

article

Microstructure and Electrochemical Characteristics of LaPrMgAlMnCoNi Hydrogen Storage Alloys for Nickel-Metal Hydride Batteries

  • Jr, Rubens Nunes Faria
  • Zarpelon, Lia Maria Carlotti
Abstract

<jats:p>The effect of the substitution of La with Pr on the microstructure and some electrochemical properties of La<jats:sub>0.7-</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Pr<jats:italic><jats:sub>x</jats:sub></jats:italic>Mg<jats:sub>0.3</jats:sub>Al<jats:sub>0.3</jats:sub>Mn<jats:sub>0.4</jats:sub>Co<jats:sub>0.5</jats:sub>Ni<jats:sub>3.8</jats:sub> (<jats:italic>x</jats:italic>=0.0, 0.1, 0.3, 0.5, and 0.7) ingot alloys as powder electrode was studied in this paper. XDR and SEM (+EDX) analyses revealed that the as-cast alloys consist mainly of similar LaNi<jats:sub>5</jats:sub> and (La,Pr)Mg<jats:sub>2</jats:sub>Ni<jats:sub>9</jats:sub> phases. With the increase in Pr content, both the relative abundance of the phases and microstructure changed. The electrochemical studies showed that the maximum discharge capacity decreased with the increase in Pr content. For the alloy without Pr, the self-discharge studies revealed a major stability of the hydride until the first 984 hours (41 days) of the charge/discharge cycles. The high-rate dischargeability of this alloy electrode showed the best result HRD=88% at a discharge current density of I<jats:sub>d</jats:sub>=250 mA/g.</jats:p>

Topics
  • density
  • microstructure
  • nickel
  • phase
  • scanning electron microscopy
  • Hydrogen
  • Energy-dispersive X-ray spectroscopy
  • current density