People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ludwig, Andreas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Hypo-peritectic TRIS–NPG in a stationary temperature gradientcitations
- 2022On/off directional solidification of near peritectic TRIS-NPG with a planar but tilted solid/liquid interface under microgravity conditions.citations
- 2022In Situ Observation of Coupled Growth Morphologies in Organic Peritectics Under Pure Diffusion Conditionscitations
- 2020Investigation of Peritectic Solidification Morphologies by Using the Binary Organic Model System TRIS-NPGcitations
- 2019Calibration of Numerical and Determination of Physical Parameters for the Organic Model System TRIS-NPG
- 2018Investigation on Peritectic Layered Structures by Using the Binary Organic Components TRIS-NPG as Model Substances for Metal-Like Solidification
- 2018Investigation on the Binary Organic Components TRIS-NPG as Suitable Model Substances for Metal-Like Solidification
- 2018Investigation on the Liquid Flow ahead of the Solidification Front During the Formation of Peritectic Layered Solidification Structure
- 2017Phase-field modelling of ternary eutetic solidification in hot dip galvanization
- 2014Influence of dendritic morphology on the calculation of macrosegregation in steel ingotcitations
- 2009Thermal stability of a binary non-faceted/non-faceted peritectic organic alloy at elevated temperaturescitations
Places of action
Organizations | Location | People |
---|
document
Influence of dendritic morphology on the calculation of macrosegregation in steel ingot
Abstract
<p>The simulation of macrosegregation in a 2.45-ton steel ingot with the three-phase mixed columnar-equiaxed model was presented previously. The results showed an overestimation of the intensity of bottom negative segregation. The reason is due to the assumed globular morphology for the equiaxed crystal. Therefore, in this paper a simple approach is suggested to treat the dendritic morphology of equiaxed crystals. Three aspects are improved: the drag force between the moving equiaxed crystals and the surrounding melt, the mechanism of the columnar-to-equiaxed transition, the packing limit of the equiaxed crystals. The modified model is used to calculate the macrosegregation of the same ingot. It is found that the modified model predicts less severe negative segregation in the bottom equiaxed zone than the previous globular equiaxed model does, i.e. it agrees better to the experiment. The model considering simplified-dendritic morphology improves the calculation accuracy.</p>