People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Béal, Coline
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Influence of the focus wobbling technique on the integrity and the properties of electron beam welded MarBN steelcitations
- 2019Improving the integrity and the microstructural features of electron beam welds of a creep-resistant martensitic steel by local (de-)alloyingcitations
- 2016Dissimilar Electron Beam Welds of Nickel Base Alloy A625 with a 9% Cr-Steel for High Temperature Applications
- 2016Evolution of the substructure of a novel 12% Cr steel under creep conditionscitations
- 2014Advanced Microstructures for Increased Creep Rupture Strength of MARBN Steelscitations
- 2014Dissimilar Electron Beam Welding of Nickel Base Alloy 625 and 9% Cr Steelcitations
- 2011Mechanical behaviour of a new automotive high manganese TWIP steel in the presence of liquid zinc ; Comportement mécanique d’un nouvel acier TWIP à haute teneur en manganèse pour l’automobile en présence de zinc liquide
Places of action
Organizations | Location | People |
---|
article
Advanced Microstructures for Increased Creep Rupture Strength of MARBN Steels
Abstract
Over the past three decades a lot of effort was made to optimize the chemical compositionof 9% Cr martensitic steels, aiming to increase the operating temperature up to 923K and thus im-proving the efficiency of thermal power plants. Under these service conditions (high temperature andstress exposure), the creep strength of such steels is closely related to the long term stability of theirmicrostructure. The time to rupture can also be understood as an equivalent to the time of microstruc-ture deterioration. Optimization of the initial microstructure and understanding of the microstructureevolution during creep exposure are therefore decisive to improve the creep behavior of 9% Cr steels.Selected chemical compositions of MarBN steels (Martensitic 9% Cr steels strengthened by Car-bides, Nitrides and Boron) were subjected to different heat treatments to produce an optimized mi-crostructure to improve the creep rupture time. The initial microstructure before creep exposure wasinvestigated using optical microscopy, SEM and EBSD. Short term creep rupture tests at 923K and150MPa were performed, followed by systematic microstructure investigations.Comparative EBSD investigations confirm an optimized microstructure for creep exposure, pro-duced by an appropriate heat treatment. From comparative creep test results, it can be concluded thatadvanced microstructures increase the time to rupture of the selected MarBN steels by more than 10percent, without reduction of the ductility.