People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Toualbi, Louise
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Grain size sensitive modelling of the nonlinear behaviour and fatigue damage of Inconel 718 superalloycitations
- 2023Modeling of the shot peening of a nickel alloy with the consideration of both residual stresses and work hardening ; Modélisation du grenaillage de précontrainte d'un alliage de nickel avec la prise en compte des contraintes résiduelles et de l'écrouissagecitations
- 2023Microstructure and mechanical properties of a laser powder bed fused Al-Fe alloy
- 2023Assesment of different additive manufacturing routes for repair: comparison of liquid-phase and solid-state material deposition processes ; Evaluation de différentes voies de fabrication additive pour la réparation : comparaison des procédés de dépôt de matériaux en phase liquide et a l'état solide
- 2022Microstructure, plasticity and ductility of a TNM + alloy densified by Spark Plasma Sintering ; Microstructure, plasticité et ductilité d'un alliage TNM+ densifié par frittage SPScitations
- 2022Microstructure, Plasticity and Ductility of a TNM+ Alloy Densified by Spark Plasma Sinteringcitations
- 2022Plasticity and brittleness of the ordered beta-0 phase in a TNM-TiAl alloy ; Plasticité et fragilité de la phase βo ordonnée dans un alliage TNM-TiAlcitations
- 2022Interplay between solidification microsegregation and complex precipitation in a γ/γ' cobalt-based superalloy elaborated by Directed Energy Deposition ; Interaction entre la microségrégation de solidification et la précipitation complexe dans un superalliage à base de cobalt γ/γ' élaboré par dépôt d'énergie dirigéecitations
- 2020Cyclic deformation of TiAl generic microstructures at room and high temperature: Bauschinger effect & strain rate sensitivity ; Etude de la déformation des microstructures génériques des alliages TiAl sous sollicitation cyclique à température ambiante et haute température : effet Bauschinger et viscositécitations
- 2013Relationships between mechanical behavior and microstructural evolutions in Fe 9Cr-ODS during the fabrication route of SFR cladding tubescitations
- 2013Macroscopic and Microscopic Determinations of Residual Stresses in Thin Oxide Dispersion Strengthened Steel Tubescitations
- 2012Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubescitations
- 2012Finite element simulation of cold pilgering of ODS tubes
- 2012Finite element simulation of cold pilgering of ODS tubes
- 2012Optimization of the Fabrication Route of Ferritic/Martensitic ODS Cladding Tubes: Metallurgical Approach and Pilgering Numerical Modeling
Places of action
Organizations | Location | People |
---|
article
Macroscopic and Microscopic Determinations of Residual Stresses in Thin Oxide Dispersion Strengthened Steel Tubes
Abstract
<jats:p>To improve the efficiency of components operating at high temperatures, many efforts are deployed to develop new materials. Oxide Dispersion Strengthened (ODS) materials could be used for heat exchangers or cladding tubes for the new GENIV nuclear reactors. This type of materials are composed with a metallic matrix (usually iron base alloy for nuclear applications or nickel base alloy for heat exchangers) reinforced by a distribution of nano-oxides. They are obtained by powder metallurgy and mechanical alloying. The creep resistance of these materials is excellent, and they usually exhibit a high tensile strength at room temperature. Depending on the cold working and/or the heat treatments, several types of microstructure can be obtained: recrystallised, stress relieved…. One of the key challenges is to transform ODS materials into thin tubes (up to 500 microns thick) within a robust fabrication route while keeping the excellent mechanical properties. To prevent cracking during the process or to obtain a final product with low residual stresses, it is important to quantify the effect of the heat treatments on the release of internal stresses. The aim of this study is to show how residual stresses can be determined on different thin tubes using two complementary approaches: (i) macroscopic stresses determination in the tube using beam theory (small cuts along the longitudinal and circumferential directions and measurements of the deflection), (ii) stress determination from x-ray diffraction analyses (surface analyses, using “sin²Ψ" method with different hypothesis). Depending on the material and the heat treatment, residual stresses vary dramatically and can reach 800 MPa which is not far from the yield stress; comparisons between both methods are performed and suggestions are given in order to optimize the thermo-mechanical treatment of thin ODS tubes.</jats:p>