People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Möslang, Anton
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2019Long-term stability of the microstructure of austenitic ODS steel rods produced with a carbon-containing process control agent
- 20183D Structural Analysis of Selected High-Temperature Materialscitations
- 2017Ductilisation of tungsten (W): Tungsten laminated compositescitations
- 2017Production, microstructure and mechanical properties of two different austenitic ODS steelscitations
- 2017Assessment of industrial nitriding processes for fusion steel applicationscitations
- 2013Abnormal Grain Growth in Ferritic-Martensitic Eurofer-97 Steelcitations
- 2011TEM study of irradiation induced copper precipitation in boron alloyed EUROFER97 steelcitations
- 2011Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steelcitations
- 2008Innovative materials for energy technologycitations
Places of action
Organizations | Location | People |
---|
article
Abnormal Grain Growth in Ferritic-Martensitic Eurofer-97 Steel
Abstract
<jats:p>Abstract. Ferritic-martensitic steels like Eurofer-97 are candidate structural materials for future fusion reactors. In the tempered state, this steel contains fine particles dispersed in the ferritic matrix. The aim of this work is to investigate abnormal grain growth in Eurofer-97 steel. The microstructural evolution was followed by isothermal annealing between 200 and 800°C (ferritic phase field) after cold rolling to 70, 80, and 90% reductions. Representative samples were characterized by scanning electron microscopy in the backscattered electron mode. Microtexture was evaluated by electron backscattered diffraction. We propose a mechanism based on the size advantage acquired by nuclei with misorientation angles above 45º relative to their nearest neighbors to explain abnormal grain growth. Abnormal grain growth textures have components belonging to the α- and γ-fibers with predominance of {111}, {111}, and {100}.</jats:p>