Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De Sa, Mh

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Experimental and First Principles Study of the Ni-Ti-W System4citations

Places of action

Chart of shared publication
Ferreira, Ja
1 / 4 shared
Braga, Mh
1 / 18 shared
Hamalainen, M.
1 / 3 shared
Isomaki, I.
1 / 2 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Ferreira, Ja
  • Braga, Mh
  • Hamalainen, M.
  • Isomaki, I.
OrganizationsLocationPeople

document

Experimental and First Principles Study of the Ni-Ti-W System

  • Ferreira, Ja
  • De Sa, Mh
  • Braga, Mh
  • Hamalainen, M.
  • Isomaki, I.
Abstract

Nickel based superalloys are structural materials with a chemical composition and structure which has been developed to enable good high temperature performances leading to a wider range of applications. Their unique properties are due to their microstructure characterized by the coexistence of L1(2)-ordered intermetallic precipitates like Ni3Al or Ni3Ti - gamma' phase - in a face-centered cubic nickel based solid solution matrix, (Ni) - gamma phase. Solid solution strengthening at high temperatures can also be provided by the addition of refractory alloying elements, like tungsten, W. Therefore, the mechanical properties behaviour of the alloys is very strongly related to their composition and microstructures. The purpose of this work is to study the effect of composition and microstructures in a series of Ni-rich prototype alloys, Ni100-2x-Ti-x-W-x (in which x is in at.%), in order to understand and ultimately optimize the performance of these materials. The adopted strategy was to combine experimental studies using Neutron Diffraction, Electron Probe Micro Analysis - EPMA, Differential Scanning Calorimeter - DSC and micro-hardness measurements, with first principles calculations for structure optimization and Gibbs energies at different temperatures, for each phase, leading to thermodynamic assessment.

Topics
  • impedance spectroscopy
  • nickel
  • phase
  • hardness
  • neutron diffraction
  • chemical composition
  • precipitate
  • differential scanning calorimetry
  • intermetallic
  • tungsten
  • superalloy
  • electron probe micro analysis