Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahyi, Ayayi Claude

  • Google
  • 1
  • 10
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012The Effects of Phosphorus at the SiO2/4H-SiC Interface1citations

Places of action

Chart of shared publication
Garfunkel, Eric
1 / 2 shared
Shen, Xiao
1 / 2 shared
Issacs-Smith, Tamara
1 / 1 shared
Xu, Yi
1 / 5 shared
Sharma, Yogesh K.
1 / 2 shared
Pantelides, Sokrates T.
1 / 3 shared
Zhu, Xing Guang
1 / 1 shared
Rozen, John
1 / 1 shared
Williams, John R.
1 / 1 shared
Feldman, Leonard C.
1 / 4 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Garfunkel, Eric
  • Shen, Xiao
  • Issacs-Smith, Tamara
  • Xu, Yi
  • Sharma, Yogesh K.
  • Pantelides, Sokrates T.
  • Zhu, Xing Guang
  • Rozen, John
  • Williams, John R.
  • Feldman, Leonard C.
OrganizationsLocationPeople

article

The Effects of Phosphorus at the SiO2/4H-SiC Interface

  • Garfunkel, Eric
  • Shen, Xiao
  • Ahyi, Ayayi Claude
  • Issacs-Smith, Tamara
  • Xu, Yi
  • Sharma, Yogesh K.
  • Pantelides, Sokrates T.
  • Zhu, Xing Guang
  • Rozen, John
  • Williams, John R.
  • Feldman, Leonard C.
Abstract

<jats:p>Phosphorous passivation of the SiO2/4H-SiC interface lowers the interface trap density and increases the field effect mobility for n-channel MOSFETs to twice the value of 30-40cm2/V-s obtained using standard NO nitridation. Passivation using P2O5 introduced with an SiP2O7 planar diffusion source (PDS) converts the oxide layer to phosphosilicate glass (PSG) which is a polar material. BTS (bias‐temperature‐stress) measurements with MOS capacitors and FETs show that the benefits of reduced interface trap density and increased mobility are offset by unstable flat band and threshold voltages. This instability can be removed by etching away the PSG oxide and depositing a replacement SiO2 layer. However, trap densities for etched MOS capacitors are "NO-like" (i.e., higher), which would lead one to expect a lower mobility if MOSFETs are fabricated with the PSG / etch / deposited oxide process.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • mobility
  • glass
  • glass
  • etching
  • field-effect transistor method
  • Phosphorus