Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barés, Jonathan

  • Google
  • 8
  • 32
  • 301

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2020Development of new biocompatible 3D printed graphene oxide-based scaffolds131citations
  • 2020Investigation of polymer-derived Si–(B)–C–N ceramic/reduced graphene oxide composite systems as active catalysts towards the hydrogen evolution reaction32citations
  • 2020Boron nitride-based nano-biocomposites: Design by 3D printing for bone tissue engineering53citations
  • 2019Shear-Jammed, Fragile, and Steady States in Homogeneously Strained Granular Materials49citations
  • 2015Effect of the porosity on the fracture surface roughness of sintered materials: From anisotropic to isotropic self-affine scaling16citations
  • 2013Failure of brittle heterogeneous materials, Intermittency, Crackling and Seismicitycitations
  • 2012Low Velocity Surface Fracture Patterns in Brittle Material: A Newly Evidenced Mechanical Instability10citations
  • 2012LOW VELOCITY SURFACE FRACTURE PATTERNS IN BRITTLE MATERIAL: A NEWLY EVIDENCED MECHANICAL INSTABILITY10citations

Places of action

Chart of shared publication
Bechelany, Mikhael
3 / 109 shared
Balme, Sébastien
1 / 9 shared
Barou, Carole
2 / 2 shared
Garay, Hélène
1 / 6 shared
Teyssier, Catherine
2 / 5 shared
Belaïd, Habib
1 / 1 shared
Huon, Vincent
3 / 10 shared
Nagarajan, Sakthivel
2 / 6 shared
Cornu, David
2 / 27 shared
Cavailles, Vincent
1 / 1 shared
Salameh, Chrystelle
1 / 9 shared
Emerson Coy, Phd, Dsc.
1 / 38 shared
Voiry, Damien
1 / 9 shared
Gervais, Christel
1 / 34 shared
Boussmen, Moustapha
1 / 1 shared
Iatsunskyi, Igor
1 / 59 shared
Miele, Philippe
2 / 46 shared
Hanniet, Quentin
1 / 2 shared
Belaid, Habib
1 / 4 shared
Cavaillès, Vincent
1 / 4 shared
Balme, Sebastien
1 / 11 shared
Socolar, Joshua E. S.
1 / 1 shared
Zhao, Yiqiu
1 / 1 shared
Zheng, Hu
1 / 1 shared
Behringer, Robert
1 / 1 shared
Auradou, Harold
1 / 5 shared
Lazarus, Veronique
1 / 8 shared
Cambonie, Tristan
1 / 2 shared
Hattali, M. L.
1 / 2 shared
Bonamy, Daniel
2 / 20 shared
Ponson, Laurent
1 / 11 shared
Hattali, Lamine
1 / 11 shared
Chart of publication period
2020
2019
2015
2013
2012

Co-Authors (by relevance)

  • Bechelany, Mikhael
  • Balme, Sébastien
  • Barou, Carole
  • Garay, Hélène
  • Teyssier, Catherine
  • Belaïd, Habib
  • Huon, Vincent
  • Nagarajan, Sakthivel
  • Cornu, David
  • Cavailles, Vincent
  • Salameh, Chrystelle
  • Emerson Coy, Phd, Dsc.
  • Voiry, Damien
  • Gervais, Christel
  • Boussmen, Moustapha
  • Iatsunskyi, Igor
  • Miele, Philippe
  • Hanniet, Quentin
  • Belaid, Habib
  • Cavaillès, Vincent
  • Balme, Sebastien
  • Socolar, Joshua E. S.
  • Zhao, Yiqiu
  • Zheng, Hu
  • Behringer, Robert
  • Auradou, Harold
  • Lazarus, Veronique
  • Cambonie, Tristan
  • Hattali, M. L.
  • Bonamy, Daniel
  • Ponson, Laurent
  • Hattali, Lamine
OrganizationsLocationPeople

article

Low Velocity Surface Fracture Patterns in Brittle Material: A Newly Evidenced Mechanical Instability

  • Barés, Jonathan
Abstract

<jats:p>The occurrence of various instabilities at very high speed is well known to occur in brittle fracture and significant advances have recently been obtained in the understanding of their origin. On the other hand, low speed brittle crack propagation under pure tension loading (mode I) is usually thought to yield smooth crack surfaces. The experimental investigation reported here questions this statement. Steady cracks were driven in brittle glassy polymers (PolyMethyl Methacrylate - PMMA) using a wedge-splitting geometry over a wide range of low velocities (10<jats:sup>-9</jats:sup>-10<jats:sup>-1</jats:sup>m/s). Three distinct patterns can be observed on the post-mortem fracture surfaces as crack velocity decreases: perfectly smooth at the highest speed, regularly fragmented at intermediate speed and macroscopically rough at the lowest speed. The transition between the two latter is reminiscent of chaotic transition.<jats:sup>a</jats:sup>hattali.lamine@gmail.com,<jats:sup>b</jats:sup>jonathan.bares@cea.fr,<jats:sup>c</jats:sup>ponson@caltech.edu,<jats:sup>d</jats:sup>daniel.bonamy@cea.fr,</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • crack