People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dieringa, Hajo
Helmholtz-Zentrum Hereon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2022AM60-AlN Nanocomposite and AM60 Alloy Corrosion Activity in Simulated Marine-Coastal Ambiencecitations
- 2022Effects of Y Additions on the Microstructures and Mechanical Behaviours of as Cast Mg–<i>x</i>Y–0.5Zr Alloyscitations
- 2022Influence of Extrusion Rate on Microstructure and Mechanical Properties of Magnesium Alloy AM60 and an AM60-Based Metal Matrix Nanocompositecitations
- 2022Effects of Y Additions on the Microstructures and Mechanical Behaviours of as Cast Mg–xY–0.5Zr Alloyscitations
- 2021Novel Magnesium Based Materials:Are They Reliable Drone Construction Materials? A Mini Reviewcitations
- 2018Magnesium and Magnesium Alloyscitations
- 2018Connected Process Design for Hot Working of a Creep-Resistant Mg–4Al–2Ba–2Ca Alloy (ABaX422)citations
- 2018Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D)citations
- 2018Review on Hot Working Behavior and Strength of Calcium‐Containing Magnesium Alloyscitations
- 2017Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclabilitycitations
- 2017Optimization of thermo-mechanical processing for forging of newly developed creep-resistant magnesium alloy ABAX633citations
- 2017Mechanism of Dynamic Recrystallization and Evolution of Texture in the Hot Working Domains of the Processing Map for Mg-4Al-2Ba-2Ca Alloycitations
- 2017High temperature strength and hot working technology for As-cast Mg-1Zn-1Ca (ZX11) alloycitations
- 2017Effect of Solution Treatment on Precipitation Behaviors, Age Hardening Response and Creep Properties of Elektron21 Alloy Reinforced by AlN Nanoparticlescitations
- 2013Compression-creep response of magnesium alloy DieMag422 containing barium compared with the commercial creep-resistant alloys AE42 and MRI230Dcitations
- 2013Development of a magnesium secondary alloy system for mixed magnesium post-consumer scrapcitations
- 2012The formation of Sr6.33Mg16.67Si13 in magnesium alloy AM50 and its effect on mechanical propertiescitations
- 2011Modelling die filling in ultra-thin aluminium die castings
- 2010Approaching bolt load retention behaviour of AS41 through compliance and creep deformation
- 2009Investigation of minimum creep rates and stress exponents calculated from tensile and compressive creep data of magnesium alloy AE42citations
- 2008Effects of segregation of primary alloying elements on the creep response in magnesium alloyscitations
- 2008Influence of processing route on the properties of magnesium alloyscitations
- 2007Advances in manufacturing processes for magnesium alloys
- 2007Thermal cycling behaviour of the magnesium alloy based hybrid composites in the transverse directioncitations
- 2007Threshold stress during tensile and compressive creep in AE42 magnesium alloy
- 2006Vergleichende Untersuchungen zum Zug- und Druckkriechverhalten der verstärkten und unverstärkten Magnesiumlegierung AE42 ; Comparative investigations on tensile and compressive creep behavior of reinforced and monolithic magnesium alloy AE42
- 2006Effects of interfacial reactions during solidification on mechanical properties in short fiber reinforced AlSi12CuMgNi composites
Places of action
Organizations | Location | People |
---|
document
Modelling die filling in ultra-thin aluminium die castings
Abstract
This work aims to develop flow and thermal control methods for the high pressure die casting (HPDC) of very thin-walled aluminium components where thicknesses are predominantly less than 1 mm. One specific aim includes developing advanced modelling capability using CFD software to predict the complex structure of the metal flow in the die and the casting solidification. The modelling based on FLOW-3D started initially with a fluidity die study to establish several key parameters in HPDC modelling through experimental validation. A new test casting geometry has been designed in the form of a shallow tray with other features such as changes in curvature, fins and bosses. The casting thickness can be made variable in the die. The experimental work was conducted on a 250-tonne HPDC machine. Initial models of molten metal flow in the die cavity based on a runner design for casting thicknesses between 1.5 mm and 1 mm are presented. The detailed model required a very large mesh of very small elements, and more accurate physical parameters which may not have been previously available.