Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mendes, T.

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010The Effect of Cu, P, Ga and Gd on Microstructure and Magnetic Properties in the PrFeCoBNb HD Sintered Magnets9citations

Places of action

Chart of shared publication
Rubens Nunes De Faria, Jr.
1 / 13 shared
Silva, S. C.
1 / 5 shared
Périgo, E. A.
1 / 5 shared
Takiishi, Hidetoshi
1 / 11 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Rubens Nunes De Faria, Jr.
  • Silva, S. C.
  • Périgo, E. A.
  • Takiishi, Hidetoshi
OrganizationsLocationPeople

article

The Effect of Cu, P, Ga and Gd on Microstructure and Magnetic Properties in the PrFeCoBNb HD Sintered Magnets

  • Rubens Nunes De Faria, Jr.
  • Silva, S. C.
  • Périgo, E. A.
  • Takiishi, Hidetoshi
  • Mendes, T.
Abstract

<jats:p>An evaluation of the effect of alloying elements on the microstructure and magnetic properties of Pr15FebalCo8B7Nb0.05Mx (M = Cu, P, Gd and Ga; 0 ≤ x ≤ 0.25) sintered magnets has been carried out. A mixture of alloys and the high-energy milling technique have been used to prepare the magnets. The alloying elements have influenced the remanence, intrinsic coercivity and particularly the squareness factor (SF). Phosphorus addition improved (BH)max (254 kJm-3 ) and SF around 10% (0.89). The same improvement addition on intrinsic coercivity was observed with Gallium (1100mT) compared to the standard composition Pr15FebalCo8B7Nb0.05 (1000mT) magnet. Comparisons between the squareness factors obtained using the J×μ0H curve profile (SF), the estimated (sf) using microstructural parameters and Sf using a (BH)max and Br correlation have also been carried out.</jats:p>

Topics
  • microstructure
  • grinding
  • milling
  • Phosphorus
  • Gallium
  • coercivity