People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nakajima, Hideo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2012On the Anisotropy of Lotus‐Type Porous Coppercitations
- 2010Deformation of Lotus-Type Porous Copper in Rollingcitations
- 2010Effect of Transfer Velocity on Porosity of Lotus-Type Porous Aluminum Fabricated by Continuous Casting Techniquecitations
- 2010Fabrication of Lotus-Type Porous Iron by Thermal Decomposition Method
- 2010Investigation of the Mechanical Properties of Lotus-Type Porous Carbon Steel Made by Continuous Zone Melting Techniquecitations
- 2010Fabrication of Lotus-Type Porous Al-Ti Alloys Using the Continuous Casting Technique
- 2010Strain rate dependence of anisotropic compression behavior in porous iron with unidirectional porescitations
- 2010Effect of Addition of NiO Powder on Pore Formation in Lotus-Type Porous Carbon Steel Fabricated by Continuous Castingcitations
- 2008Magnetization process of lotus-type porous metalscitations
- 2006Compressive properties of lotus-type porous stainless steelcitations
- 2005Anisotropic electrical conductivity of lotus-type porous nickelcitations
Places of action
Organizations | Location | People |
---|
article
Deformation of Lotus-Type Porous Copper in Rolling
Abstract
<jats:p>Although forming of porous metal is demanded for industrial applications, the deformation characteristics have not been investigated sufficiently. In this study, lotus-type porous copper is processed by multi-pass cold rolling. At the early stage of rolling, the elongation of the porous copper in the rolling direction is small, and the porosity decreases almost linearly with the total reduction in thickness. It is found that pass schedule with small rolls and with small reduction per pass is effective to suppress pore closure. Hardness of the porous copper increases almost linearly with total reduction. If the effective total reduction is considered, the hardness change is similar to that of a nonporous copper.</jats:p>