People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nakajima, Hideo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2012On the Anisotropy of Lotus‐Type Porous Coppercitations
- 2010Deformation of Lotus-Type Porous Copper in Rollingcitations
- 2010Effect of Transfer Velocity on Porosity of Lotus-Type Porous Aluminum Fabricated by Continuous Casting Techniquecitations
- 2010Fabrication of Lotus-Type Porous Iron by Thermal Decomposition Method
- 2010Investigation of the Mechanical Properties of Lotus-Type Porous Carbon Steel Made by Continuous Zone Melting Techniquecitations
- 2010Fabrication of Lotus-Type Porous Al-Ti Alloys Using the Continuous Casting Technique
- 2010Strain rate dependence of anisotropic compression behavior in porous iron with unidirectional porescitations
- 2010Effect of Addition of NiO Powder on Pore Formation in Lotus-Type Porous Carbon Steel Fabricated by Continuous Castingcitations
- 2008Magnetization process of lotus-type porous metalscitations
- 2006Compressive properties of lotus-type porous stainless steelcitations
- 2005Anisotropic electrical conductivity of lotus-type porous nickelcitations
Places of action
Organizations | Location | People |
---|
article
Effect of Transfer Velocity on Porosity of Lotus-Type Porous Aluminum Fabricated by Continuous Casting Technique
Abstract
<jats:p>Lotus-type porous aluminum was fabricated by continuous casting technique in mixture gas of hydrogen and argon at various transfer velocities in order to understand formation process of pores. The porosity and pore diameter decrease with increasing transfer velocity. The transfer velocity dependence of the porosity in lotus aluminum is different from that in other lotus metals such as stainless steel and copper. It is considered that the difference is attributed to lower solubility in aluminum than that in other metals.</jats:p>