Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nakae, Hideo

  • Google
  • 1
  • 2
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Role of Oxide Particles in Aluminum Melt toward Aluminum Foam Fabrication by the Melt Route7citations

Places of action

Chart of shared publication
Babcsán, Norbert
1 / 2 shared
Kadoi, Kota
1 / 2 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Babcsán, Norbert
  • Kadoi, Kota
OrganizationsLocationPeople

article

Role of Oxide Particles in Aluminum Melt toward Aluminum Foam Fabrication by the Melt Route

  • Babcsán, Norbert
  • Nakae, Hideo
  • Kadoi, Kota
Abstract

<jats:p>The aim of this work is to elucidate the role and contribution of oxide particles to aluminum foam fabrication. The melts were internally oxidized by a thickening process in which pure aluminum melt was stirred with or without the addition of 1.5 wt.% calcium for maximum 25 min. After this, each thickened samples were melted again and mixed for 100 s by introducing 1.5 wt.% TiH2 as a blowing agent. In order to investigate the foam evolution, the foam samples were hold in the furnace for 50 to 500 s. The stirring torque (viscosity) of the calcium containing melt increases with thickening time and achieves the stationary value after 17 min. However, the torque of pure aluminum melt does not change during stirring. Oxides have been found on the microstructures of both stirred samples, although the content of oxides of calcium added sample is significantly more than that of pure aluminum. SEM observation results of samples thickened by calcium addition show that the melt contains calcium oxide and Al4Ca in addition to equiaxed aluminum, and the morphology of formed oxide is not granulous but wrinkled bifilm containing calcium and aluminum oxides. The oxides formed in the pure Al melt has less effect on the viscosity thus the foamability of the aluminum melt. It is found that the calcium oxides formed by stirring are responsible for the effective increase of melt viscosity. The foams using oxidized pure Al melt have dense layer at the bottom caused by drainage and coarse foam structure due to strong coalescence. In case of the Al-Ca alloy, uniform pore distribution, lack of the dense layer and homogeneous time dependent increase of the cell size were observed. Besides, the sample held for longer time has thicker cell wall at the bottom compared with that at the top. We confirmed that the oxide bifilms of Al and Ca contributes to decreased drainage rate and coalescence, namely stabilization. The insufficient amount of oxide particles in pure aluminum is the reason for the lack of stabile foam (significant drainage) in that case.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • pore
  • morphology
  • scanning electron microscopy
  • melt
  • aluminum oxide
  • aluminium
  • laser emission spectroscopy
  • aluminium foam
  • Calcium
  • pure aluminum
  • melt viscosity