Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Takiishi, Hidetoshi

  • Google
  • 11
  • 24
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2018Effect of Hydrogen Decrepitation Pressure on the Particle Size of Rare Earth Based Alloys for Ni-Mh Battery Productioncitations
  • 2012Microstructure and Electrochemical Properties of a LaMgAlMnCoNi Based Alloy for Ni/MH Batteries4citations
  • 2010The Effect of Cu, P, Ga and Gd on Microstructure and Magnetic Properties in the PrFeCoBNb HD Sintered Magnets9citations
  • 2010Effect of Variables the HDDR Processing on Magnetic Properties and Microstructure in Permanent Magnets Based on Pr-Fe-Bcitations
  • 2010Effect of Hydrogenation Pressure on Microstructure and Mechanical Properties of Ti-13Nb-13Zr Alloy Produced by Powder Metallurgycitations
  • 2008The Effect of the Processing Temperature on the Microstructures of Pr-Fe-Co-B-Nb HDDR Magnets2citations
  • 2008A Comparative Study between Low and High-Energy Milling Processes for the Production of HD PrFeCoBNb Sintered Magnets1citations
  • 2008Microstructure and Magnetic Properties of PrFeCoBNb Sintered Magnets Produced from HD and HDDR Powders1citations
  • 2008X-Ray Diffraction Analysis and Magnetic Properties of Pr-Fe-B HDDR Powders and Magnets2citations
  • 2006Curie Temperature Determination of Pr Permanent Magnet Alloys1citations
  • 2005The Influence of Pr Concentration on the Magnetic Properties of Pr-Fe-Co-B-Nb HDDR Magnetscitations

Places of action

Chart of shared publication
Casini, Julio Cesar Serafim
1 / 1 shared
Vieira, Ligia Silverio
1 / 1 shared
Silva, Franks Martins
1 / 1 shared
Faria, Rubens Nunes De
1 / 3 shared
Soares, Edson Pereira
1 / 1 shared
Rubens Nunes De Faria, Jr.
10 / 13 shared
Casini, Julio César Serafim
1 / 1 shared
Ferreira, Eliner Affonso
3 / 4 shared
Serra, J. M.
1 / 5 shared
Silva, S. C.
5 / 5 shared
Périgo, E. A.
3 / 5 shared
Mendes, T.
1 / 1 shared
Santos, P. B.
1 / 1 shared
Duvaizem, José Hélio
2 / 2 shared
Galdino, Gabriel Souza
1 / 1 shared
Bressiani, Ana Helena A.
1 / 1 shared
Soares, E. P.
1 / 2 shared
Motta, C. C.
1 / 1 shared
Martinez, Luís Gallego
1 / 1 shared
Orlando, M. T. D.
1 / 2 shared
Barbosa, Luzinete Pereira
2 / 2 shared
Rodrigues, Daniel
1 / 5 shared
Janasi, S. R.
1 / 2 shared
Ferreira, N. A.
1 / 1 shared
Chart of publication period
2018
2012
2010
2008
2006
2005

Co-Authors (by relevance)

  • Casini, Julio Cesar Serafim
  • Vieira, Ligia Silverio
  • Silva, Franks Martins
  • Faria, Rubens Nunes De
  • Soares, Edson Pereira
  • Rubens Nunes De Faria, Jr.
  • Casini, Julio César Serafim
  • Ferreira, Eliner Affonso
  • Serra, J. M.
  • Silva, S. C.
  • Périgo, E. A.
  • Mendes, T.
  • Santos, P. B.
  • Duvaizem, José Hélio
  • Galdino, Gabriel Souza
  • Bressiani, Ana Helena A.
  • Soares, E. P.
  • Motta, C. C.
  • Martinez, Luís Gallego
  • Orlando, M. T. D.
  • Barbosa, Luzinete Pereira
  • Rodrigues, Daniel
  • Janasi, S. R.
  • Ferreira, N. A.
OrganizationsLocationPeople

article

X-Ray Diffraction Analysis and Magnetic Properties of Pr-Fe-B HDDR Powders and Magnets

  • Rubens Nunes De Faria, Jr.
  • Silva, S. C.
  • Duvaizem, José Hélio
  • Martinez, Luís Gallego
  • Orlando, M. T. D.
  • Takiishi, Hidetoshi
Abstract

<jats:p>Fine magnetic powder has been produced using the hydrogenation disproportionation desorption and recombination (HDDR) process. The first goal of this work involved an investigation of a range of disproportionation/desorption temperatures between 800 and 900°C with the purpose of optimizing the HDDR treatment for a Pr14Fe80B6 alloy. The cast alloy was annealed at 1100°C for 20 hours for homogenization. The optimum disproportionation temperature for achieving high anisotropy was 820°C. The influence of the reaction temperature on the microstructure and magnetic properties of Pr14Fe80B6 HDDR powders and magnets has been shown. A second stage of this study involved the characterization, for each temperature, of the HDDR processed powder using X-ray diffraction analysis. Samples of the HDDR material have been studied by synchrotron radiation powder diffraction using the Rietveld method for cell refinement, phase quantification and crystallite sizes determination. Scanning electron microscopy (SEM) has also been employed to reveal the morphology of the HDDR powder.</jats:p>

Topics
  • microstructure
  • morphology
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • homogenization