Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Duvaizem, José Hélio

  • Google
  • 2
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Effect of Hydrogenation Pressure on Microstructure and Mechanical Properties of Ti-13Nb-13Zr Alloy Produced by Powder Metallurgycitations
  • 2008X-Ray Diffraction Analysis and Magnetic Properties of Pr-Fe-B HDDR Powders and Magnets2citations

Places of action

Chart of shared publication
Rubens Nunes De Faria, Jr.
2 / 13 shared
Galdino, Gabriel Souza
1 / 1 shared
Bressiani, Ana Helena A.
1 / 1 shared
Takiishi, Hidetoshi
2 / 11 shared
Silva, S. C.
1 / 5 shared
Martinez, Luís Gallego
1 / 1 shared
Orlando, M. T. D.
1 / 2 shared
Chart of publication period
2010
2008

Co-Authors (by relevance)

  • Rubens Nunes De Faria, Jr.
  • Galdino, Gabriel Souza
  • Bressiani, Ana Helena A.
  • Takiishi, Hidetoshi
  • Silva, S. C.
  • Martinez, Luís Gallego
  • Orlando, M. T. D.
OrganizationsLocationPeople

article

X-Ray Diffraction Analysis and Magnetic Properties of Pr-Fe-B HDDR Powders and Magnets

  • Rubens Nunes De Faria, Jr.
  • Silva, S. C.
  • Duvaizem, José Hélio
  • Martinez, Luís Gallego
  • Orlando, M. T. D.
  • Takiishi, Hidetoshi
Abstract

<jats:p>Fine magnetic powder has been produced using the hydrogenation disproportionation desorption and recombination (HDDR) process. The first goal of this work involved an investigation of a range of disproportionation/desorption temperatures between 800 and 900°C with the purpose of optimizing the HDDR treatment for a Pr14Fe80B6 alloy. The cast alloy was annealed at 1100°C for 20 hours for homogenization. The optimum disproportionation temperature for achieving high anisotropy was 820°C. The influence of the reaction temperature on the microstructure and magnetic properties of Pr14Fe80B6 HDDR powders and magnets has been shown. A second stage of this study involved the characterization, for each temperature, of the HDDR processed powder using X-ray diffraction analysis. Samples of the HDDR material have been studied by synchrotron radiation powder diffraction using the Rietveld method for cell refinement, phase quantification and crystallite sizes determination. Scanning electron microscopy (SEM) has also been employed to reveal the morphology of the HDDR powder.</jats:p>

Topics
  • microstructure
  • morphology
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • homogenization