Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ruiz Navas, Elisa Maria

  • Google
  • 8
  • 3
  • 56

Universidad Carlos III de Madrid

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Design of Sustainable Aluminium-Based Feedstocks for Composite Extrusion Modelling (CEM)1citations
  • 2013Comparison of Microstructure and Properties of Ti-6Al-7Nb Alloy Processed by Different Powder Metallurgy Routes12citations
  • 2013Processing of Elemental Titanium by Powder Metallurgy Techniques16citations
  • 2012Modification of Sintered Titanium Alloys by Hot Isostatic Pressing11citations
  • 2007Development of Aluminium Alloys and Metal Matrix Composites by Powder Metallurgy8citations
  • 2007New Developments in Powder Technology1citations
  • 2007Study for the Development of Fe-NbC Composites by Advanced PM Techniques6citations
  • 2007Study of TiCn Additions to an 2xxx Series Aluminium Alloy1citations

Places of action

Chart of shared publication
Tabares, Eduardo
1 / 1 shared
Garcia, Jose Luis Aguilar
1 / 1 shared
Jiménez-Morales, Antonia
1 / 3 shared
Chart of publication period
2024
2013
2012
2007

Co-Authors (by relevance)

  • Tabares, Eduardo
  • Garcia, Jose Luis Aguilar
  • Jiménez-Morales, Antonia
OrganizationsLocationPeople

article

Study of TiCn Additions to an 2xxx Series Aluminium Alloy

  • Ruiz Navas, Elisa Maria
Abstract

<jats:p>The increasing demand of PM parts for automobile and aerospace applications has caused a strong development of the aluminium based metal matrix composites (MMCs).Aluminium alloys are one of most widely used materials as matrix in MMCs, both in research and development as well as in industrial applications. The main reason is the combination of good specific properties, the first requirement in most applications, and the competitive price compared to other low density alloys such as Mg or Ti alloys. In the present work, the influence of the ceramic reinforcement addition to a 2xxx series aluminium alloy is studied. Several percentages of TiCN have been added to the Al-Cu alloy using PM techniques, in order to analyze its influence on the liquid phase sintering process and also on the final properties of the material. The materials have been uniaxially compacted using two different pressures to determine the optimal pressing condition. They have been subsequently sinterized in a N2-H2 atmosphere. Analysing the results obtained, it can be concluded that the addition of TiCN allows a better distribution of the liquid phase up to the 10 %wt, where the optimal results are observed: For higher quantities of reinforcement, elemental copper is observed in the microstructure with the consequent decrease in densification.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • aluminium
  • aluminium alloy
  • copper
  • ceramic
  • liquid phase
  • sintering
  • metal-matrix composite
  • densification