Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matlakhova, Lioudmila Aleksandrovna

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Thermal cycling treatment and structural changes in Cu-Al-Ni monocrystalline alloys10citations

Places of action

Chart of shared publication
Matlakhov, Anatoliy N.
1 / 1 shared
Pereira, Elaine Cristina
1 / 1 shared
Silva, Rui J. C.
1 / 71 shared
Rodríguez, Ruben Jesus Sanchez
1 / 1 shared
Monteiro, Sergio Neves
1 / 5 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Matlakhov, Anatoliy N.
  • Pereira, Elaine Cristina
  • Silva, Rui J. C.
  • Rodríguez, Ruben Jesus Sanchez
  • Monteiro, Sergio Neves
OrganizationsLocationPeople

document

Thermal cycling treatment and structural changes in Cu-Al-Ni monocrystalline alloys

  • Matlakhova, Lioudmila Aleksandrovna
  • Matlakhov, Anatoliy N.
  • Pereira, Elaine Cristina
  • Silva, Rui J. C.
  • Rodríguez, Ruben Jesus Sanchez
  • Monteiro, Sergio Neves
Abstract

<p>In the present work a monocrystalline Cu-13.5Al-4Ni (wt.%) alloy with shape memory effect (SME) submitted to thermal cycling inside the critical range was investigated in terms of number of cycles and resulting structural changes. Attention was paid to the structural changes associated with reversible β<sub>1</sub>↔γ'<sub>1</sub> martensite transformation. The monocrystalline Cu-Al-Ni alloy was produced in Russia, according to a specific technology. The structural characteristic of the alloys was studied through optical microscopy and X-ray diffraction methods using Cu-Kα radiation. Differential scanning calorimetry permitted the determination of the temperature range as well as a thermal effect due to the β<sub>1</sub>↔γ '<sub>1</sub> martensitic reversible transformations, before and after 100, 200 and 300 thermal cycles.</p>

Topics
  • x-ray diffraction
  • differential scanning calorimetry
  • optical microscopy
  • diffraction method