People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borges, João Paulo Miranda Ribeiro
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Bioactive Hydroxyapatite Aerogels with Piezoelectric Particlescitations
- 2024Experimental study of Double-Elliptic-Ring-based thermomechanical metamaterials’ behaviourcitations
- 2023Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillerscitations
- 2023Thermal, Structural, Morphological and Electrical Characterization of Cerium-Containing 45S5 for Metal Implant Coatingscitations
- 2023Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implantcitations
- 2023Hydroxyapatite-Barium Titanate Biocoatings Using Room Temperature Coblastingcitations
- 2023Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applicationscitations
- 2022Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticlescitations
- 2020Conductive electrospun Polyaniline/Polyvinylpyrrolidone nanofibers: Electrical and morphological characterization of new yarns for electronic textilescitations
- 2019Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineeringcitations
- 2019Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineeringcitations
- 2019Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaborationcitations
- 2019Development of polymeric anepectic meshes: Auxetic metamaterials with negative thermal expansioncitations
- 2019Polymer blending or fiber blending: a comparative study using chitosan and poly(ε-caprolactone) electrospun fiberscitations
- 2018Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineeringcitations
- 2017Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatincitations
- 2017Tailoring the morphology of hydroxyapatite particles using a simple solvothermal routecitations
- 2017Hybrid polysaccharide-based systems for biomedical applicationscitations
- 2016Thermal and magnetic properties of chitosan-iron oxide nanoparticlescitations
- 2016Natural Nanofibres for Composite Applicationscitations
- 2016A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineeringcitations
- 2015Osteogenisis enhancement of hydroxyapatite based materials by electrical polarization
- 2015Chitin-Based Nanocomposites: Biomedical Applicationscitations
- 2015Electrospun mats of biodegradable chitosan-based polyurethane urea
- 2015Antimicrobial electrospun silver-, copper-and zinc-doped polyvinylpyrrolidone nanofibers
- 2014Cellulose‐Based Liquid Crystalline Composite Systemscitations
- 2014Effects of surfactants on the magnetic properties of iron oxide colloidscitations
- 2014Electrical polarization of a chitosan-hydroxyapatite composite
- 2013Enhancing the Response of Chemocapacitors with Electrospun Nanofiber Filmscitations
- 2011All-Cellulosic Based Composites
- 2006Mechanical characterization of dense hydroxyapatite blockscitations
- 2001Cellulose-based composite filmscitations
Places of action
Organizations | Location | People |
---|
document
Mechanical characterization of dense hydroxyapatite blocks
Abstract
<p>Bioactive dense HAp ceramics possess a unique set of properties, which make them suitable as bone substitute. However, both physical and mechanical properties of HAp have to be evaluated in order to produce new materials that match the bone stiffness. This paper highlights the influence of both porosity and grain size on the four-point flexural strength and the indentation fracture toughness of pure dense HAp blocks sintered at 130°C. Both discs and rectangular bars were produced by uniaxial pressing at 40MPa and sintered in static air at temperatures between 1150 and 1325°C for 1 h in order to assess the densification behaviour of the P120S medical grade HAp powder used. After sintering, both the density and the open porosity were measured. In addition to FT-IR, XRD and SEM, the mechanical properties of the dense HAp blocks, including Young's modulus, flexural strength, Vicker's hardness and fracture toughness, were characterized and whenever possible these properties were compared to those reported for cortical bone. Pressureless sintering to full density at temperatures below 1300°C does not occur for the stoichiometric powder used. The results obtained underline the importance of full mechanical characterisation of dense HAp so that new implant materials can be developed. There is a need to improve the microstructure and thus enhance mechanical strength of HAp ceramics, as it was found that flexural strength is closely related to the micropores present in the sintered samples.</p>