People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cartmell, Matthew
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Application of a dynamic thermoelastic coupled model for an aerospace aluminium composite panelcitations
- 2021Experimental investigation of the thermoelastic performance of an aerospace aluminium honeycomb composite panelcitations
- 2012Applications for shape memory alloys in structural and machine dynamicscitations
- 2010An analytical model for the vibration of a composite plate containing an embedded periodic shape memory alloy structurecitations
- 2008Smart materials applications to structural dynamics and rotating machines
- 2007The control of bearing stiffness using shape memory
- 2006Proposals for controlling flexible rotor vibrations by means of an antagonistic SMA/composite smart bearingcitations
- 2003Static and dynamic behaviour of composite structures with shape memory alloy componentscitations
- 2003Dynamics of multilayered composite plates with shape memory alloy wirescitations
- 2003One-dimensional shape memory alloy models for use with reinforced composite structurescitations
- 2003A sensitivity analysis of the dynamic performance of a composite plate with shape memory alloy wirescitations
- 2001Statics and dynamics of composite structures with embedded shape memory alloys
Places of action
Organizations | Location | People |
---|
article
Static and dynamic behaviour of composite structures with shape memory alloy components
Abstract
In this work selected results have been presented for the static and dynamic behaviour of composite beams, plates, and rotors, all fitted with integral SMA wires or strips. Changes in the static deflections, natural frequencies and critical loads, natural modes, amplitudes of forced vibration, and stress distributions, have all been investigated. Applications of the Active Property Tuning (APT) method and the Active Strain Energy Tuning (ASET) method have been proposed, and the finite element method (FEM) has been used to calculate the static and dynamic responses of these structures. Along with the authors' bespoke programs, two FEM commercial packages PATRAN and ABAQUS have been applied to obtain the relevant data. The ultimate intention is to use embedded SMAs within a composite structure as an actuator for the control of rotor vibration.